Педагогічні умови використання навчальних моделей у процесі підготовки вчителів природничо-математичних спеціальностей
Вантажиться...
Дата
2019
Назва журналу
Номер ISSN
Назва тому
Видавець
СумДПУ імені А. С. Макаренка
Анотація
Дисертація присвячена розробці, теоретичному обґрунтуванню й експериментальній перевірці педагогічних умов використання навчальних моделей у процесі професійної підготовки майбутніх учителів природничо- математичних спеціальностей. Визначено й систематизовано функції навчальних моделей в освітньому процесі з природничо-математичних дисциплін. Показано роль навчальних моделей як інструменту фундаменталізації природничо-математичної освіти. Виокремлено три основні аспекти фундаменталізації освіти – філософський, методологічний, світоглядний, виходячи з яких обґрунтовано педагогічні умови застосування навчальних моделей у процесі природничо- математичної підготовки майбутніх учителів відповідних спеціальностей: взаємозумовлене використання структурних і функціональних моделей: використання еволюційних ланцюжків моделей, що відображають розвиток наукових уявлень; використання моделей-аналогів, які відтворюють єдність природи. Проведений педагогічний експеримент підтвердив, що комплексна реалізація перелічених умов сприяє підвищенню глибини, системності й гнучкості предметних знань майбутніх учителів природничо-математичних спеціальностей.
This thesis reveals theoretical principles of improving discipline-specific preparation of future natural sciences and mathematics teachers via targeted application of educational models when studying natural sciences and mathematics disciplines at pedagogic institutions of higher education. For that purpose, the results of published works by Ukrainian and foreign authors devoted to this topic have been generalized and structured, in particular, by model forms and types. The functions of models in teaching natural sciences and mathematics disciplines have been defined and theoretically substantiated, and the models have been classified on the basis of principal orientation (ensuring availability of objects of study in education process; perceiving digestion of academic materials; optimizing organization of education process; supporting research activities of students). In this thesis, the author theoretically substantiates and experimentally verifies pedagogic conditions for the use of educational models in the process of professional preparation of future natural sciences and mathematics teachers. The first pedagogic condition envisages the mutually-related use of structural and functional models that give birth to each other and are organically interrelated. The first pedagogic condition is basically realized when studying single objects, and it is based on a group of model functions that help perceive academic materials and on the functions supporting research activity. The second pedagogic condition envisages the use of evolutional model chains in the course of studying natural sciences and mathematics disciplines, enabling to identify invariant knowledge and thus helping develop systemic knowledge in students. Evolutional model chains reflect the process of developing a particular natural or mathematical science, i.e. represent a sequence of theories that clarify and substitute each other within the framework of a particular discipline. Realization of the second pedagogic condition is based on the function of concrelization, generalization and variable complexity of models. Essentially, this condition functionally defines, according to M. Skatkin’s and V. Kraicvskyt's terminology, “theoretical scientific framework” of education, when “evolution of knowledge structuring” couples with "structuring of evolution of knowledge”. The third pedagogic condition envisages the use of analogue models that display the existence of fundamental laws of nature manifesting themselves in various fields of natural sciences and mathematics. The application of this pedagogic condition in the process of studying one subject-specific field envisages the use of models pertaining to previously studied topics, sections or other subject-specific fields based on the similarity of properties that reflect these models. That makes it easier for future teachers to digest and perceive new materials, helping develop in them flexible and systemic knowledge and scientific understanding of unity of the world. Realization of the third pedagogic condition is based on the forecasting and heuristic functions of models and on the abstraction function. All pedagogic conditions are also based on the function of mainstreaming educational and cognitive activity of students, while realization of these conditions promotes development of their motivational sphere and interest in the future professional activity by creating positive effect on the success fulness of perception and digestion of academic materials. The data obtained as a result of the experiment proves that implementation of the proposed pedagogic conditions helps improve the depth, flexibility of discipline-specific knowledge of students in experimental groups vis-a-vis the reference groups. The results of this experiment suggest the conclusion regarding positive effect from implementation of the proposed pedagogic conditions, which manifests itself in the improved quality of natural sciences and mathematics discipline-specific preparation of future natural sciences and mathematics teachers.
This thesis reveals theoretical principles of improving discipline-specific preparation of future natural sciences and mathematics teachers via targeted application of educational models when studying natural sciences and mathematics disciplines at pedagogic institutions of higher education. For that purpose, the results of published works by Ukrainian and foreign authors devoted to this topic have been generalized and structured, in particular, by model forms and types. The functions of models in teaching natural sciences and mathematics disciplines have been defined and theoretically substantiated, and the models have been classified on the basis of principal orientation (ensuring availability of objects of study in education process; perceiving digestion of academic materials; optimizing organization of education process; supporting research activities of students). In this thesis, the author theoretically substantiates and experimentally verifies pedagogic conditions for the use of educational models in the process of professional preparation of future natural sciences and mathematics teachers. The first pedagogic condition envisages the mutually-related use of structural and functional models that give birth to each other and are organically interrelated. The first pedagogic condition is basically realized when studying single objects, and it is based on a group of model functions that help perceive academic materials and on the functions supporting research activity. The second pedagogic condition envisages the use of evolutional model chains in the course of studying natural sciences and mathematics disciplines, enabling to identify invariant knowledge and thus helping develop systemic knowledge in students. Evolutional model chains reflect the process of developing a particular natural or mathematical science, i.e. represent a sequence of theories that clarify and substitute each other within the framework of a particular discipline. Realization of the second pedagogic condition is based on the function of concrelization, generalization and variable complexity of models. Essentially, this condition functionally defines, according to M. Skatkin’s and V. Kraicvskyt's terminology, “theoretical scientific framework” of education, when “evolution of knowledge structuring” couples with "structuring of evolution of knowledge”. The third pedagogic condition envisages the use of analogue models that display the existence of fundamental laws of nature manifesting themselves in various fields of natural sciences and mathematics. The application of this pedagogic condition in the process of studying one subject-specific field envisages the use of models pertaining to previously studied topics, sections or other subject-specific fields based on the similarity of properties that reflect these models. That makes it easier for future teachers to digest and perceive new materials, helping develop in them flexible and systemic knowledge and scientific understanding of unity of the world. Realization of the third pedagogic condition is based on the forecasting and heuristic functions of models and on the abstraction function. All pedagogic conditions are also based on the function of mainstreaming educational and cognitive activity of students, while realization of these conditions promotes development of their motivational sphere and interest in the future professional activity by creating positive effect on the success fulness of perception and digestion of academic materials. The data obtained as a result of the experiment proves that implementation of the proposed pedagogic conditions helps improve the depth, flexibility of discipline-specific knowledge of students in experimental groups vis-a-vis the reference groups. The results of this experiment suggest the conclusion regarding positive effect from implementation of the proposed pedagogic conditions, which manifests itself in the improved quality of natural sciences and mathematics discipline-specific preparation of future natural sciences and mathematics teachers.
Опис
Ключові слова
професійна підготовка вчителя, педагогічні умови, навчальні моделі, природничо-математичні спеціальності, функції навчальних моделей, preparation of teachers, teachers of natural and mathematical specialties, functions of educational models, pedagogical conditions of using educational models
Бібліографічний опис
Рикова, Л. Л. Педагогічні умови використання навчальних моделей у процесі підготовки вчителів природничо-математичних спеціальностей [Текст] : автореф. дис. ... канд. пед. наук : [спец.] 13.00.04 – теорія і методика професійної освіти / Рикова Лариса Леонідівна ; [науковий керівник Л. І. Білоусова]. – Суми : СумДПУ ім. А. С. Макаренка, 2019. – 20 с.