Методика розв’язування задач на поверхні другого порядку в курсі аналітичної геометрії

dc.contributor.authorЧемерис Ольга Анатоліївна
dc.contributor.authorChemerys Olha Anatoliivna
dc.contributor.authorПрус Алла
dc.contributor.authorPrus Alla
dc.date.accessioned2018-10-04T07:39:58Z
dc.date.available2018-10-04T07:39:58Z
dc.date.issued2018
dc.description.abstractУ статті визначено особливості фундаментальної підготовки майбутніх учителів математики на прикладі дисциплін геометричного циклу. Вивчення дисциплін, що є складовими фундаментальної підготовки студентів, спрямоване на формування загальної математичної культури, необхідної майбутньому вчителеві математики, оволодіння комплексом математичних методів та розвиток навичок застосування їх на практиці, розгортання теоретичних основ для прикладних наукових досліджень, забезпечення зв'язку з методичною підготовкою. Проаналізовано особливості розв’язання задач з аналітичної геометрії. Пошук розв'язку задачі будь-якої складності базується на використанні формул, ознак, правил, аксіом, теорем, властивостей, на основі яких створюється певний алгоритм. Стисло оглянуто тему «Поверхні другого порядку» та виділено базові поняття, згідно яких і формується зміст практичних занять (поверхні обертання, еліпсоїди, гіперболоїди, конуси, циліндри, параболоїди, вироджені поверхні другого порядку). Розглянуто основні типи геометричних задач в темі дослідження. Наведено приклади задач із розв’язанням або вказівками для роботи на заняттях із дисципліни. В задачах на складання канонічних рівнянь, в першу чергу, використовують характеристичні властивості поверхонь другого порядку, а саме, ліній, які їм належать. Важливим типом задач є розпізнавання видів поверхонь другого порядку за їх канонічними рівняннями. У прикладних задачах часто зустрічаються ситуації, коли рівняння поверхні задано в канонічному вигляді, але з відмінним від стандартного розташування осей. Проте при чіткому викладі викладачем алгоритму розпізнавання типів поверхонь значна частина студентів достатньо добре засвоює навички застосування цих алгоритмів. Особливо хороші результати дає використання різноманітних опорних конспектів, обговорення алгоритму студентами на практичному занятті. Підкреслено важливість та прикладний характер вивчення поверхонь другого порядку для курсу вищої математики та елементарної геометрії.uk_UA
dc.description.abstractThe article outlines the peculiarities of the fundamental training of future mathematics teachers on the example of the disciplines of the geometric cycle. The study of disciplines that are part of the fundamental training of students is aimed at forming a general mathematical culture, a necessary future mathematics teacher, mastering the complex of mathematical methods and developing the skills of their application in practice, deploying theoretical foundations for applied research, providing communication with methodological training.  Peculiarities of solving problems with analytic geometry are analyzed. The solution of the problem of any complexity is based on the use of formulas, signs, rules, axioms, theorems, properties, on the basis of which an algorithm for solving is created. The theme "Surfaces of the second order" is briefly examined and the basic concepts are determined, according to which the content of practical classes (rotational surfaces, ellipsoids, hyperboloids, cones, cylinders, paraboloids, degenerate surfaces of the second order) is formed. The main thematic types of geometric problems in the research topic are considered. Examples of problem solving or guidance for work in disciplines are given. In the tasks for the compilation of canonical equations, first of all, we use the characteristic properties of surfaces of the second order, namely, the lines lying on them. An important type of task is the recognition of the types of surfaces of the second order according to their canonical equations. In applications, situations are often encountered when the surface equation is given in canonical form, but different from the standard arrangement of axes. However, with a clear presentation by the teacher of the algorithm for the recognition of types of surfaces, a significant proportion of students are sufficiently well acquainted with the skills of the application of these algorithms. Particularly good results give the use of various background notes, discussion of the algorithm by students in practical classes. The importance and applied character of the study of surfaces of the second order for the course of higher mathematics and elementary geometry are emphasized.uk_UA
dc.identifier.citationЧемерис, О. А. Методика розв’язування задач на поверхні другого порядку в курсі аналітичної геометрії [Текст] / О. А. Чемерис, А. В. Прус // Фізико-математична освіта : науковий журнал / Міністерство освіти і науки України, Сумський державний педагогічний університет імені А. С. Макаренка, Фізико-математичний факультет ; [редкол.: М. П. Вовк, М. Гр. Воскоглу, Т. Г. Дерека та ін.; гол. ред. О. В. Семеніхіна]. – Суми : Вид-во СумДПУ імені А. С. Макаренка, 2018. – Вип. 2 (16). – С. 147–152.uk_UA
dc.identifier.doi10.31110/2413-1571-2018-016-2-028
dc.identifier.urihttps://repository.sspu.edu.ua/handle/123456789/5422
dc.language.isoukuk_UA
dc.publisherСумДПУ імені А. С. Макаренкаuk_UA
dc.subjectаналітична геометріяuk_UA
dc.subjectповерхні другого порядкуuk_UA
dc.subjectматематичні задачіuk_UA
dc.subjectтипи задачuk_UA
dc.subjectтвірніuk_UA
dc.subjectлінійчаті поверхніuk_UA
dc.subjectanalytical geometryuk_UA
dc.subjectsurfaces of the second orderuk_UA
dc.subjectmathematical problemsuk_UA
dc.subjecttypes of tasksuk_UA
dc.subjectinventiveuk_UA
dc.subjectline¬shaped surfacesuk_UA
dc.titleМетодика розв’язування задач на поверхні другого порядку в курсі аналітичної геометріїuk_UA
dc.title.alternativeMethod of Solving the Problem on Surface of Another Order in Analytical Geometry Courseuk_UA
dc.typeArticleuk_UA
dc.udc.udc378.514uk_UA
Файли
Контейнер файлів
Зараз показуємо 1 - 1 з 1
Вантажиться...
Ескіз
Назва:
Chemeris.pdf
Розмір:
1009.32 KB
Формат:
Adobe Portable Document Format
Опис:
Ліцензійна угода
Зараз показуємо 1 - 1 з 1
Ескіз недоступний
Назва:
license.txt
Розмір:
2.99 KB
Формат:
Item-specific license agreed upon to submission
Опис: