Диференціальне та інтегральне числення в задачах на послідовності

Вантажиться...
Ескіз
Дата
2015
Назва журналу
Номер ISSN
Назва тому
Видавець
СумДПУ імені А. С. Макаренка
Анотація
У математичному аналізі та на олімпіадах з математики різного рівня досить часто зустрічаються задачі на числові послідовності, які не мають стандартних методів розв’язування. Іноді пошук розв’язку такої задачі потребує ґрунтовних досліджень, пов’язаних з властивостями функцій. Якщо для заданої послідовності an  підібрати деяку функцію ax , визначену при всіх x  0 , і покласти an  an для будь-яких n  N , то вивчення послідовності можна звести до дослідження функції ax в цілочисельних точках. Цей підхід дозволяє зокрема використовувати теореми диференціального та інтегрального числення при розв’язуванні таких задач. Нажаль, у науковій та методичній літературі з математичного аналізу даний підхід не виділений як метод розв’язування задач на послідовності, не встановлені класи задач, для яких він є найбільш ефективним, а пропонуються лише окремі з них. У даній статті ми виділили типи задач на послідовності, розв’язання яких потребує переходу до функцій неперервного аргументу, та розкрили особливості застосування математичного апарату диференціального та інтегрального числення при їх розв’язуванні.
Problems on numeric sequences that do not have standard methods of solution are quite common in mathematical analysis and at math competitions of various levels. Sometimes the search for the solution of this problem requires fundamental research related to the properties of functions. If you pick up some function ax , defined at all x  0 , for the given sequence an , and put an  an for any n  N , then the study of sequence can be reduced to the study of function ax in integer points. This approach allows us to use theorems of differential and integral calculus in solving these problems. Unfortunately, in the scientific and methodical literature on mathematical analysis this approach is not highlighted as a method for solving sequence problems, classes of problems, for which it is most effective, are not established, and only some of them are offered. In this article authors have identified the types of sequence problems, which solution requires a transition to functions of continuous argument, and revealed the features of the application of mathematical apparatus of differential and integral calculus in solving them.
Опис
Ключові слова
послідовність, функція, диференціальне, інтегральне числення, задача, sequence, function, differential, integral calculus problem
Бібліографічний опис
Мартиненко, О. В. Диференціальне та інтегральне числення в задачах на послідовності [Текст] / О. В. Мартиненко, Я. О. Чкана // Фізико-математична освіта : науковий журнал / МОН України, Сумський державний педагогічний університет імені А. С. Макаренка, Фізико-математичний факультет ; [редкол.: В. Ю. Сторіжко, Ф. М. Лиман, І. О. Мороз та ін.]. – Суми [СумДПУ імені А. С. Макаренка], 2015. – Вип. 3 (6). – С. 33–40.