Навчання розв’язування олімпіадних задач, пов’язаних із цілою частиною дійсного числа, за допомогою властивостей точок розриву кусково-сталих функцій
Вантажиться...
Дата
2019
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
СумДПУ імені А. С. Макаренка
Анотація
Практика викладання математики та його науково-методичного супроводу переконливо свідчить про те, що задачі про цілу (дробову) частину дійсного числа традиційно акумулюють значний пласт навичок учнів, вимагають високої аналітичної культури, технічної винахідливості. Така тематика є актуальною складовою реалізації надважливої функціональної лінії підготовки школяра й студента, підвищення кваліфікації вчителя в питаннях застосування різноманітних властивостей функцій, вимагає навичок алгебраїчних, комбінаторних, теоретико-числових міркувань.
Формулювання проблеми. Виникає проблема пошуку та/або модернізації апарату дієвих методичних та математичних прийомів навчання розв’язування задач підвищеного рівня складності, пов’язаних із цілою та дробовою частиною числа, серед яких завжди виділяються задачі математичних олімпіад як індикатор якості сформованої фахової компетентності.
Матеріали і методи. У статті розглядається з теоретичної та практичної точки зору питання навчання розв’язування певних типів задач, пов’язаних із цілою частиною числа, шляхом створення прикладу системи задач, в яких ефективно застосовуються міркування з генезисом у «базовому» курсі математичного аналізу для студентів. Використовується потужний і принциповий для педагогічної діяльності в галузі математики «контрастний» дидактичний метод, який полягає, зокрема, в тому, що для деяких складних олімпіадних задач наводяться і розв’язання, передбачені їхніми авторами, і пропонуються альтернативні — у контексті тематики статті.
Результати. Розроблено ідею використання елементарної характеризації точок розриву кусково-сталих функцій, що природно виникають у зв’язку з розглядом виразів з цілою частиною, та необхідні для реалізації такої ідеї методичне середовище та супровід.
Висновки. Матеріали статті набувають особливих рис з точки зору обов’язкової підготовки на математичних спеціальностях педагогічних університетів до майбутньої роботи з обдарованими учнями в процесі опанування розділів вищої математичної освіти, неперервної самоосвіти вчителів, скеровують на подальшу пошукову діяльність школярів, вчителів, викладачів та студентів закладів вищої освіти, авторів задач математичних олімпіад тощо.
The practice of teaching mathematics and its scientific and methodological support convincingly evidences that the problems on the integer (fractional) part of a real number traditionally accumulate a considerable layer of students' skills, require a high analytical culture, technical ingenuity. Such topics are an actual component of the implementation of the most important functional line for a pupil and a student training, teacher training in the use of various properties of functions, requires skills of algebraic, combinatorial, number-theoretic considerations. Formulation of the problem. There is a problem of searching and/or modernizing the apparatus of effective methodological and mathematical methods for solving relevant problems of higher complexity level, related to the integer and fractional part of a real number, among which the problems of mathematical olympiads are always highlighted as an indicator of the quality of the formed professional competence. Materials and methods. The article deals with theoretical and practical point of view of solving some types of problems related to the integer part of the number by creating an example of a system of problems in which arguments are effectively applied with genesis in the «basic» course of mathematical analysis for students. A powerful and principled «contrast» didactic method for pedagogical activity in the field of mathematics is used: that is, in particular, for some complex olympiad-type problems the solutions provided by their authors are presented and alternatives are proposed in the context of the subject matter of the article. Results. The idea of using the elementary characterization of the discontinuity points of step functions, which naturally arise in connection with the consideration of expressions with the integer part, and the methodical environment and maintenance necessary for the implementation of such idea has been developed. Conclusions. Materials of the article acquire special lineaments from the point of view of compulsory preparation in mathematical specialties of pedagogical universities for the future work with gifted schoolchildren in the process of mastering sections of higher mathematical education, in-service self-education of teachers, directing for further search activity of secondary school students and teachers, teachers and students of institutions of higher education, authors of the problems of mathematical olympiads, etc.
The practice of teaching mathematics and its scientific and methodological support convincingly evidences that the problems on the integer (fractional) part of a real number traditionally accumulate a considerable layer of students' skills, require a high analytical culture, technical ingenuity. Such topics are an actual component of the implementation of the most important functional line for a pupil and a student training, teacher training in the use of various properties of functions, requires skills of algebraic, combinatorial, number-theoretic considerations. Formulation of the problem. There is a problem of searching and/or modernizing the apparatus of effective methodological and mathematical methods for solving relevant problems of higher complexity level, related to the integer and fractional part of a real number, among which the problems of mathematical olympiads are always highlighted as an indicator of the quality of the formed professional competence. Materials and methods. The article deals with theoretical and practical point of view of solving some types of problems related to the integer part of the number by creating an example of a system of problems in which arguments are effectively applied with genesis in the «basic» course of mathematical analysis for students. A powerful and principled «contrast» didactic method for pedagogical activity in the field of mathematics is used: that is, in particular, for some complex olympiad-type problems the solutions provided by their authors are presented and alternatives are proposed in the context of the subject matter of the article. Results. The idea of using the elementary characterization of the discontinuity points of step functions, which naturally arise in connection with the consideration of expressions with the integer part, and the methodical environment and maintenance necessary for the implementation of such idea has been developed. Conclusions. Materials of the article acquire special lineaments from the point of view of compulsory preparation in mathematical specialties of pedagogical universities for the future work with gifted schoolchildren in the process of mastering sections of higher mathematical education, in-service self-education of teachers, directing for further search activity of secondary school students and teachers, teachers and students of institutions of higher education, authors of the problems of mathematical olympiads, etc.
Опис
Ключові слова
методика навчання математики, олімпіадні задачі з математики, ціла частина числа, точки розриву функцій, кусково-сталі функції, післядипломна педагогічна освіта, загальна середня освіта, mathematics teaching methodology, olympiad-type problems in mathematics, integer part of number, discontinuity points of functions, step functions, postgraduate pedagogical education, general secondary education
Бібліографічний опис
Мітельман, І. М. Навчання розв’язування олімпіадних задач, пов’язаних із цілою частиною дійсного числа, за допомогою властивостей точок розриву кусково-сталих функцій [Текст] / І. М. МІтельман // Фізико-математична освіта : науковий журнал / Міністерство освіти і науки України, Сумський державний педагогічний університет імені А. С. Макаренка, Фізико-математичний факультет ; [редкол.: М. П. Вовк, М. Гр. Воскоглу, Т. Г. Дерека та ін.]. – Суми : [СумДПУ імені А. С. Макаренка], 2019. – Вип. 2 (20). – С. 107–113.