eSSPU logo
  • Українська
  • English
  • Увійти
    Новий користувач? Зареєструйтесь.Забули пароль?
eSSPU logo
  • Фонди та зібрання
  • Пошук за критеріями
  • Українська
  • English
  • Увійти
    Новий користувач? Зареєструйтесь.Забули пароль?
  1. Головна
  2. Переглянути за автором

Перегляд за Автор "Sharypova L. D."

Зараз показуємо 1 - 1 з 1
Результатів на сторінці
Налаштування сортування
  • Документ
    Об одной занимательной задаче на расстояние между кривыми
    (СумДПУ імені А. С. Макаренка, 2018) Тургунбаев Р. М.; Turhunbaev R. M; Шарипова Л. Д.; Sharypova L. D.
    В школьном курсе геометрии расстояние от точки А до прямой I определяется как длина перпендикуляра, опущенного из точки А на прямую I. А формулы расстояния как между точкой и прямой, так и между параллельными прямыми выводятся уже в вузовском курсе аналитической геометрии. Прямая как график линейной функции определяется в школьном курсе алгебры, где общий вид линейной функции рассматривается как общее уравнение прямой. В курсе алгебры и начал анализа определяется касательная и приводится ее уравнение. Но ни уравнения прямой, проходящей через заданные две точки, ни условия перпендикулярности прямых в общеобразовательном курсе математики не изучаются. Однако эти факты можно вполне доступно изложить как учащимся старших классов средних школ, так и академических лицеев. Вместе с тем можно рассматривать задачи на расстояние между кривыми, в частности, между прямой и параболой, а также между параболами. Эти задачи можно изучать на факультативных занятиях по математике со школьниками, проявляющими повышенный интерес к изучаемому предмету. В данной статье расстояние между точкой и кривой определяется как наименьшее расстояние от данной точки до точек кривых, а расстояние между кривыми определяется как наименьшее расстояние между точками данных кривых. В случае, когда кривые являются графиками некоторых дифференцируемых функций, используя методы дифференциального исчисления и обобщения доказаны следующие факты: расстояние между точкой и прямой равно длине перпендикуляра, опущенного из данной точки на данную прямую; в случае параболы расстояние от точки до кривой равно длине перпендикуляра, проведенного к касательной в точке касания; расстояние между параболой и прямой равно расстоянию между прямой и касательной к параболе, параллельной данной прямой; расстояние между двумя параболами равно расстоянию между параллельными касательными к этим параболам. Приводится пример решения задачи на нахождение расстояние между параболами. При этом предварительно выводится уравнение прямой, проходящей через две заданные точки, доказывается критерий перпендикулярности прямых, заданных уравнениями с угловыми коэффициентами.

Програмне забезпечення DSpace та СумДПУ імені А.С. Макаренка copyright © 2002-2025 LYRASIS

  • Налаштування куків
  • Політика приватності
  • Надіслати відгук