Перегляд за Автор "Nadtochyi Viktor"
Зараз показуємо 1 - 2 з 2
Результатів на сторінці
Налаштування сортування
Документ Гравитационное красное смещение(СумДПУ імені А. С. Макаренка, 2020) Берестовий Анатолій; Berestovyi Anatolii; Надточий Віктор; Nadtochyi ViktorВ высших учебных заведениях рассматриваются основные характеристики гравитационного поля – напряженность и потенциал. В рамках классических представлений студенты знакомятся с равенством инерционных и гравитационных масс. Все эти закономерности воспринимаются слушателями достаточно легко. Но последствия, возникающие вследствие равенства этих масс, не всегда очевидны. Данная статья является обзорной. Ее цель заключается в том, чтобы дать определение гравитационного смещения, доступное для понимания студентов, на простых примерах показать взаимосвязь гравитационного замедления времени (изменения частоты колебаний электромагнитного излучения) с потенциалом гравитационного поля. Формулировка проблемы. В этой работе уделяется внимание методике изложения материала, касающегося одного из важных разделов Общей теории относительности (ОТО) - гравитационного красного смещения. Часть этого материала студентами изучается в курсе общей физики при рассмотрении физических свойств гравитационного поля. Материалы, методы. В данной статье рассмотрены три подхода к пониманию взаимосвязи временных интервалов с изменением частоты колебаний. Первый из них базируется на принципе эквивалентности инертной и гравитационной массы, который утверждает: в гравитационном поле все физические явления происходят точно так же, как в поле инерционных сил (то есть в ускоренных системах отсчета). Мысленный эксперимент, проведенный с лифтом, покоящимся на Земле и движущимся с ускорением силы тяжести, приводит к качественной оценки зависимости временных интервалов от значения потенциала в определенных точках Земли. Во втором случае на основе закона сохранения энергии проведена количественная оценка временного замедления вблизи массивных тел. Значение относительного изменения времени оказывается крайне малой величиной порядка 10-15. Оно было подтверждено в известном эксперименте Паунда и Ребки. Наконец, качественная зависимость частоты колебаний от силы гравитационного поля демонстрируется на примере математического маятника. Результаты. Изложение материала и примеры становится более наглядным, способствует лучшему запоминанию и восприятию студентами новых понятий. Повышается методическое мастерство самого преподавателя. Выводы. Студентам, приступающим к изучению основ общей теории относительности, довольно сложно ощутить сущность гравитационного красного смещения (зависимость хода времени от величины гравитационного поля). В данной статье предпринята попытка пояснить связь промежутков времени с силой гравитации (потенциалом гравитационного поля) на основе трех мысленных экспериментов. Естественно, что связь пространства и времени можно подтвердить на основе и иных экспериментальных данных и теоретических соображений.Документ Утворення дислокацій у приповерхневому шарі Ge під дією лазерного імпульсу(СумДПУ імені А. С. Макаренка, 2020) Надточий Віктор; Nadtochyi Viktor; Бєлошапка Олександр; Bieloshapka OleksandrФормулювання проблеми. Стаття є дослідною. Головна проблема яка висувається в статі, це чи зароджуються дислокації, під дією лазерного опромінення. Спочатку ставили задачу визначити умову імпульсного лазерного опромінення, при якій найбільш ефективно створюються напруження зсуву у приповерхневому шарі кристала, а також задачу розрахунку температурного поля у зоні опромінення. Матеріали і методи. Використовували монокристалічний германій з питомим опором 45 Ом·см і щільністю ростових дислокацій 2,5·103 см-2. Торець злитка з площиною (111) піддавали шліфуванню, хіміко-динамічному і хімічному поліруванню. Дефектну структуру виявляли у хромовому травнику із суміші CrO3:HF=1:1. Опромінення поверхні (111) Ge здійснювали на лазерній установці типу УИГ-1М з рубіновим оптичним квантовим генератором, працюючим у режимі вільної генерації на довжині хвилі λ =0,694 мкм. Густина енергії опромінення на поверхні германію змінювалась в межах 2- 25Дж/см2, тривалість імпульсу була 1мс. Опромінення відбувалося сфокусованим на поверхні лазерним променем, в окремих експериментах використовували розфокусований промінь. Діаметр D зони лазерного опромінювання становив 3 мм. Дислокаційну структуру вивчали оптичним методом Результати. За результатами обчислень були отримані залежності температури вздовж радіуса плями для різних моментів часу від початку дії лазерного опромінювання Проаналізовано фізичний механізм виникнення дислокацій на ділянці з температурою ̴ 450 К, де фотонагрівання не є головним фактором дефектоутворення. Структурними дослідженнями встановлено, що найбільш ефективно напруження зсуву у приповерхневому шарі зразка Ge створюються дією розфокусованого променя з енергією опромінення, достатньої для оплавлення кристала лише у центрі лазерної плями. Шляхом розв’язання диференціального рівняння теплопровідності отримані залежності густини оптичної потужності, яка поглинається поверхнею від часу опромінення, а також розподіл температури на поверхні уздовж радіуса лазерної плями. Висновки. Зроблено висновок, що дислокації в лінійно-періодичних структурах виникають за рахунок гетерогенного зародження і розширення призматичних петель, орієнтованих в періодично-індукованому полі концентрації вакансій.