Перегляд за Автор "Ivchenko Volodymyr"
Зараз показуємо 1 - 3 з 3
Результатів на сторінці
Налаштування сортування
Документ Вивчення ефектів, пов’язаних з неоднорідністю поля, як ефективний засіб поглиблення знань студентів-фізиків про силове поле(СумДПУ імені А. С. Макаренка, 2019) Івченко Володимир; Ivchenko VolodymyrФормулювання проблеми. У шкільному курсі фізики кількісні розрахунки робляться переважно для однорідних силових полів (рух тіл в однорідному гравітаційному полі Землі; використання моделі однорідного електростатичного поля плоского конденсатора для розрахунку руху зарядів та його електричних характеристик тощо). Проте, варто пам'ятати, що однорідне силове поле, є моделлю граничного переходу і реальні силові поля є суттєво неоднорідними. Матеріали і методи. Узагальнення та системний аналіз літературних першоджерел з даної тематики; технологія задачного підходу у процесі вивчення фізики; методи математичного аналізу, системний підхід. Результати. Ефекти, пов'язані з неоднорідністю силового поля, є дуже різноманітними і проявляються як у макро-, так й у мікросвіті. Наближення однорідного поля, зазвичай, є граничним випадком неоднорідного поля. Воно застосовується для малих областей простору. Проте, навіть, у цьому випадку існують ефекти, які неможливо пояснити в межах моделі однорідного поля. Такі ефекти становлять не лише фундаментальний інтерес, але й мають важливий прикладний характер. Висновки. Проведене у даній роботі дослідження дозволило виокремити низку фізичних проблем, що виникають завдяки саме неоднорідного характеру силового фізичного поля. Така система фізичних задач дозволяє всебічно висвітлити реальну структуру різного роду полів і може бути з успіхом впроваджена в навчальний процес у вивченні відповідних тем студентами-фізиками.Документ Вивчення лінійних та нелінійних моделей як невід'ємна складова курсу фізики у закладі вищої освіти(СумДПУ імені А. С. Макаренка, 2020) Івченко Володимир; Ivchenko VolodymyrФормулювання проблеми. У шкільному курсі фізики межі застосування лінійних законів не обговорюються, що призводить до їх надмірного використання при вирішенні задач. У зв’язку з цим необхідно: 1) розробити та описати методику аналізу меж застосування лінійних моделей граничного переходу в курсі фізики закладу вищої освіти; 2) висвітлити приклади застосування деяких найбільш світоглядно значущих нелінійних моделей для опису певних фізичних процесів та явищ. Матеріали і методи. Узагальнення та системний аналіз літературних джерел з обраної тематики; методи математичного аналізу, системний підхід, задачний підхід. Результати. Ефекти, пов’язані з нелінійністю фізичних систем і процесів, є дуже різноманітними і проявляються як у макро-, так і у мікросвіті. Лінійні моделі, як правило, є граничним випадком нелінійних моделей і є застосовними для доволі вузьких інтервалів зміни аргументу. Кількісний аналіз меж застосування лінійних фізичних моделей, який може бути проведений разом із студентами під час лекційних або практичних занять, повинен сприяти формуванню та розвитку їх уявлень про застосування моделей граничного переходу у фізиці. Описана методика аналізу має дедуктивний характер и дозволяє з єдиних позицій розглянути низку лінійних фізичних моделей. Висновки. Надмірне використання та абсолютизація лінійних фізичних моделей студентами обумовлюють необхідність систематичного висвітлення в курсі фізики закладу вищої освіти меж застосування стрижневих «лінійних» законів та впровадження в навчальний процес вивчення найбільш значущих нелінійних моделей фізичних явищ, процесів та систем. Попередні результати навчання підтверджують ефективність описаного підходу для розвитку модельних уявлень студентів.Документ Про різні типи класифікації наукових навчальних моделей у курсі фізики вищого закладу освіти(СумДПУ імені А. С. Макаренка, 2018) Івченко Володимир; Ivchenko VolodymyrВ статті розглянуто наступні типи класифікації наукових моделей у вишівському курсі фізики: класифікація моделей за типом наукової абстракції; класифікація моделей за предметом теоретичного опису; природна класифікація моделей та класифікація моделей за ступенем модельного узагальнення. В першому випадку всі моделі можуть бути умовно розділені на абстракції ототожнення, абстракції граничного переходу та абстракції, що вводяться за означенням. Для другого випадку вирізняють моделі: фізичних систем, фізичних взаємодій, фізичних зв’язків, фізичних процесів, фізичних явищ та фізичних законів. У межах класифікації за ступенем модельного узагальнення можна виокремити фундаментальні, базисні та часткові моделі. Ми наводимо чотирнадцять дихотомічних типів фундаментальних моделей, а саме: статичні та динамічні моделі; моделі із зосередженими та розподіленими параметрами; дискретні та континуальні моделі; детерміновані та стохастичні моделі; гомогенні та гетерогенні моделі; лінійні та нелінійні моделі; періодичні та неперіодичні моделі; симетричні та асиметричні моделі; -нуль, -одно, -дво та тривимірні моделі; «жорсткі»та «м’які» моделі; монолімітні та полілімітні моделі; моноконтекстні та поліконтекстні моделі; монотипні та дуальні моделі;, дедуктивні, індуктивні та «плаваючі» моделі. Також розглянуто природну класифікацію наукових моделей в фізиці (механічні моделі, моделі теплових та електромагнітних явищ, оптичні моделі та моделі мікросистем). Проаналізовані у даній роботі різні типи класифікації ідеальних фізичних моделей дозволяють всебічно висвітлити зміст кожної моделі, що розглядається у вишівському курсі фізики. Для кращого засвоєння студентами усього різноманіття характерних ознак таких моделей ми пропонуємо користатися технологією фреймового навчання. У роботі наведено приклади фреймування змісту двох базисних моделей –моделі матеріальної точки та моделі ідеального газу.