Перегляд за Автор "Holovnia R. M."
Зараз показуємо 1 - 1 з 1
Результатів на сторінці
Налаштування сортування
Документ Використання визначних історичних задач для розвитку креативного мислення як складової математичної компетентності(2024) Бондарчук В. М.; Bondarchuk V. M.; Головня Р. М.; Holovnia R. M.; Сверчевська Ірина Анатоліївна; Sverchevska Iryna AnatoliivnaСтаття присвячена дослідженню можливості впливу на розвиток креативного мислення розв’язування визначних історичних математичних задач. Креативне мислення розглядається як складова математичної компетентності. Ці питання є актуальними у зв’язку зі зростаючими потребами суспільства в творчій особистості, спроможній знаходити шляхи вирішення проблем, продукувати успішні проєкти, робити обґрунтовані висновки. Формуванню прийомів креативного мислення сприяє розвиток умінь пошуку потрібної інформації, засобів розв’язування математичної задачі, всебічного розгляду, переформулювання задачі, внесення нових умов, прогнозування результату розв’язання. Запропоновано використовувати визначні історичні задачі з математики. Узагальнення та видозміна відомих задач видатних математиків можуть бути використані як поштовх до пошукової діяльності та розвитку логічного мислення. Зосереджено увагу на невизначених рівняннях. Такі задачі розглядав давньогрецький математик Діофант. Найвідомішим невизначеним рівняння є Велика теорема Ферма, над доведенням якої більше трьохсот років працювали математики всього світу. Щоб відчути причетність до великого відкриття доцільно розглядати запропоновані видозмінені рівняння Ферма, розв’язання яких доступне для здобувачів освіти. Стверджується, що це дасть поштовх до розвитку їх інтелектуальних здібностей, творчої активності та розвитку креативного мислення. Змінені невизначені рівняння запропоновано називати видозміненими рівняннями Ферма. Запропоновано рівняння Ферма, які мають розв’язки при певних умовах, відмінних від умов самої теореми Ферма. Також розглянуто видозмінені рівняння Ферма, для яких доступні доведення щодо відсутності розв’язків. Робиться висновок, що пошук шляхів розв’язання видозмінених рівнянь Ферма сприятиме розвитку креативного мислення під час навчання математики. Таким чином підвищиться якість формування компетентностей здобувачів освіти, в тому числі ключової математичної компетентності.