Проблема прогнозування в задачах математичного моделювання

Вантажиться...
Ескіз
Дата
2016
Назва журналу
Номер ISSN
Назва тому
Видавець
СумДПУ імені А. С. Макаренка
Анотація
У статті описаний двоточковий і триточковий метод позіноміальної інтерполяції для інтегрування погано зумовлених функцій, визначення ступення ризику. Розроблено теорію позіноміальної інтерполяції неперервних або дискретнх функцій. Обгрунтовано умови існування інтерполяційних позіномів. Продемонстровано застосовуваність позіноміальних многочленів. Знайшли умови існування Лагранжевого типу позіному на сітці 3m . Дійшли до висновку, що для єдності позінома багатьох змінних необхідно обмежити умови задання функції, що інтерполюється.
This article describes the two-point and three-point interpolation method for integrating pozinomialnoy ill-conditioned function, determine the degree of risk. The theory of interpolation of continuous or pozinomialnoy diskretnh functions. Reasonably conditions for the existence of interpolation pozinomov. It demonstrated the applicability pozinomialnih polynomials. They found the conditions of existence of Lagrangian type pozinoma on the grid. Concluded that the unity of a polynomial in several variables necessary to limit the terms of the job interpolated function.
Опис
Ключові слова
позіном, інтерполяція, погано зумовлена функція, інтегрування, ступінь ризику, рівновага динамічної системи, pozinom, interpolation, function poorly conditioned, integration, integration risk, balance of dynamical system
Бібліографічний опис
Проблема прогнозування в задачах математичного моделювання [Текст] / В. С. Абрамчук, Д. О. Петрук, О. С. Пугач, А. П. Юзва, І. В. Абрамчук // Фізико-математична освіта : науковий журнал / Міністерство освіти і науки України, Сумський державний педагогічний університет імені А. С. Макаренка, Фізико-математичний факультет ; [редкол.: В. Ю. Сторіжко, Ф. М. Лиман, І. О. Мороз та ін.; гол. ред. О. В. Семеніхіна]. – Суми : [СумДПУ імені А. С. Макаренка], 2016. – Вип. 2 (8). – С. 9–16.