Оптимізаційні методи розв’язування систем Ax=B

dc.contributor.authorАбрамчук В. С.
dc.contributor.authorAbramchuk V. S.
dc.contributor.authorАбрамчук І. В.
dc.contributor.authorAbramchuk I. V.
dc.contributor.authorПетрук Д. О.
dc.contributor.authorPetruk D. O.
dc.contributor.authorПугач О. С.
dc.contributor.authorPuhach O. S.
dc.date.accessioned2017-10-18T12:35:50Z
dc.date.available2017-10-18T12:35:50Z
dc.date.issued2017
dc.description.abstractУ роботі обґрунтовано, що ітераційні методи класу x(k+1)= B(k)x(k) + Bk w(k) , Bk є M n*n(R),w(k) є Rn, Bk є R, не є ефективними при розв’язуванні систем Ax=b, b є imA. З погано зумовленими матрицями A є M n*n(R), rankA = n, довільної структури, великих порядків: сповільнюється швидкість збіжності, оскільки наближення при мінімізації норми вектора нев’язки або вектора похибки попадають в область K min – область мінімальних нев’язок; базисні вектори з підпростору Крилова, на яких ґрунтується збіжність методу, сильно зумовлені, похибки обчислень приводять до не монотонності процесу збіжності. Запропонований двоциклічний алгоритм мінімізує похибку обчислень і строго монотонно збігається. Алгоритм заснований на основі базису Крилова Kr r Ar A r m ={ , ,..., m-1 } , r p – нев’язка і системи повних базисів Ke e Ae A e e i i i i i = { , ,..., , m-1 } i n=1 { } i n=1 – одиничний базис. Базис Krm використовується для побудови початкового наближення, базиси {Kei}in=1 – для уточнення напрямного вектора на розв’язок, у заданій (обчисленій) точці x(0) , що гарантує стійкість процесу обчислень. Критерій прийняття наближеного рішення системи стійкий до похибок.uk_UA
dc.description.abstractThe work proved that kind of iterative methods x(k+1)= B(k)x(k) + Bk w(k) , Bk є M n*n(R),w(k) є Rn, Bk є R, are not effective in solving systems, Ax=b, b є imA with ill predefined matrices A є M n*n(R), rankA = n, arbitrary structure, large orders, slowing the rate of convergence as the approach vector regulations while minimizing the residual error vector or fall in the set K min - set of minimum residuals; basis vectors of Krylov subspace on which the convergence method, greatly due, calculation errors do not lead to monotony process of convergence. The proposed algorithm based dvotsyklichnyy which minimizes the error computation and strictly monotonously the same. The algorithm is based on the basis of the Krylov basis Kr r Ar A r m ={ , ,..., m-1 } , r – discrepancy and complete system of bases Ke e Ae A e e i i i i i = { , ,..., , m-1 } i n=1 { } i n=1 – unit basis. The basis Krm used to build the initial approach, bases {Kei}in=1 – to refine the guide on the solution vector in the set (computed) point x(0) that guarantees process stability calculations. Criterion adoption approximate solution of a system resistant to errors.uk_UA
dc.identifier.citationОптимізаційні методи розв'язування систем Ax=B [Текст] / В. С. Абрамчук, І. В. Абрамчук, Д. О. Петрук, О. С. Пугач // Фізико-математична освіта : збірник наукових праць / Міністерство освіти і науки, Сумський державний педагогічний університет імені А. С. Макаренка, Фізико-математичний факультет ; редкол.: В. Ю. Сторіжко, Ф. М. Лиман, І. О. Мороз [та ін.]. – Суми : Вид-во СумДПУ імені А. С. Макаренка, 2017. – Вип. 1 (11). – С. 9–13.uk_UA
dc.identifier.urihttps://repository.sspu.edu.ua/handle/123456789/2598
dc.language.isoukuk_UA
dc.subjectпогано зумовлені матриціuk_UA
dc.subjectітераційні методиuk_UA
dc.subjectметод напрямленого пошукуuk_UA
dc.subjectбазиси криловського типуuk_UA
dc.subjectbad conditioned matrixuk_UA
dc.subjectiterative methoduk_UA
dc.subjectmethod directional searchuk_UA
dc.subjectbases Krylov typeuk_UA
dc.titleОптимізаційні методи розв’язування систем Ax=Buk_UA
dc.title.alternativeOptimization Methods for Solving Systems Ax=Buk_UA
dc.typeArticleuk_UA
Файли
Контейнер файлів
Зараз показуємо 1 - 1 з 1
Вантажиться...
Ескіз
Назва:
2017_1(11)_Abramchuk+_Scientific journal FMO.pdf
Розмір:
1.36 MB
Формат:
Adobe Portable Document Format
Опис:
Ліцензійна угода
Зараз показуємо 1 - 1 з 1
Ескіз недоступний
Назва:
license.txt
Розмір:
2.99 KB
Формат:
Item-specific license agreed upon to submission
Опис: