Аналіз завдань практичного змісту ЗНО з математики 2017–2019 років

dc.contributor.authorЯковлєва Ольга Миколаївна
dc.contributor.authorYakovlieva Olha Mykolaivna
dc.contributor.authorКаплун Вікторія
dc.contributor.authorKaplun Viktoriia
dc.date.accessioned2020-02-20T12:48:49Z
dc.date.available2020-02-20T12:48:49Z
dc.date.issued2019
dc.description.abstractФормулювання проблеми. У зв’язку з переорієнтуванням напряму освіти зі знаннєвого до компетентнісного, вміння розв’язувати математичні задачі практичного змісту є актуальним та необхідним для учнів. Представлені завдання охоплюють теми всього шкільного курсу математики, тому, для вдалої здачі ЗНО, роботі над розв’язанням завдань практичного змісту варто приділяти постійну увагу протягом всього періоду навчання. Виникла необхідність системного аналізу завдань практичного змісту ЗНО з математики 2017-2019 років та доведення важливості систематичного включення в уроки математики завдань практичного змісту для розвитку здатності учнів застосовувати свої знання в навчальних і реальних життєвих ситуаціях, поліпшення результатів зовнішнього незалежного оцінювання та інших видів тестування. Матеріали і методи. Для вирішення поставленої проблеми застосовувався системно-структурний підхід: проведено статистичну обробку сертифікаційних робіт основних та додаткових сесій ЗНО з математики 2017, 2018, 2019 років на предмет знаходження в них завдань практичного змісту; проаналізовано психометричні таблиці результатів ЗНО, надані Українським центром оцінювання якості освіти; запропоновано класифікацію завдань практичного змісту ЗНО з математики; виявлено складову завдань практичного змісту в навчальних програмах з математики для 5-11 класів. Результати. Після проведення системного аналізу складової завдань практичного змісту ЗНО 2017, 2018, 2019 років, було зазначено, що в сертифікаційних роботах завдань практичного змісту містилося 15-18% від загальної кількості завдань ЗНО з математики, і цей відсоток зросте до 22 в 2021 році. Біля 65% таких завдань стали для учасників складними і не були розв’язані. Найскладнішими виявилися завдання з комбінаторики, теорії ймовірностей, геометричні задачі та задачі на складання дробово-раціональних рівнянь. Висновки. Автори дослідили динаміку змін завдань ЗНО практичного змісту щодо їх якості та кількості за останні роки, класифікували та проаналізували їх за формою, обсягом, складністю, темами та класами. Зроблений аналіз виявив значні проблеми щодо вмінь учнів застосовувати отримані математичні знання на практиці, хоча дослідження підручників 5-11 класів і навчальних програм з математики показало, що вони містять достатню кількість завдань практичного змісту, а опанування завдань практичного змісту передбачено у всіх класах. Задля покращення ситуації вчителеві не треба уникати роботи з цими завданнями, потрібно планувати уроки таким чином, щоб завдання практичного змісту розглядались і залучались до освітнього процесу систематично, протягом усіх років навчання математики.uk_UA
dc.description.abstractFormulation of the problem. Due to the reorientation of the direction of education from knowledge to competence, the ability to solve mathematical tasks of practical content is relevant and necessary for students. The presented tasks cover the topics of the whole school mathematics course, therefore, for successful passing of the ZNO, work on solving the tasks of practical content should be given constant attention throughout the study period. The need for a systematic analysis of the tasks of practical content of ZNO in mathematics 2017-2019 and to prove the importance of systematic inclusion in the lessons of mathematics practical content tasks to develop the ability of students to apply their knowledge in educational and real life situations, improve the results of external independent assessment and other types of testing. Materials and methods. To solve this problem, a system-structural approach was applied: statistical processing of certification works of the basic and additional sessions of ZNO in mathematics 2017, 2018, 2019 was conducted in order to find practical tasks in them; psychometric tables of ZNO results provided by the Ukrainian Center for Educational Quality Assessment were analyzed; classification of tasks of practical content of ZNO in mathematics is proposed; the component of practical content tasks in mathematics curricula for 5-11 grades is revealed. Results. After conducting a systematic analysis of the components of the practical content tasks of the ZNO 2017, 2018, 2019, it was noted that the certification works of the practical content contained 15-18% of the total number of ZNO tasks in mathematics, and this percentage will increase to 22 in 2021. More than 65% of these tasks became difficult for participants and were not solved. Combinatorics, probability theory, geometric problems, and fractional-rational equation problems proved to be the most difficult. Conclusions. The authors investigated the dynamics of changes in the ZNO practical content tasks in terms of quality and quantity in recent years, classified and analyzed them by form, scope, complexity, topics and classes. The analysis revealed significant problems with students' ability to apply their mathematical knowledge in practice, although studies of 5-11 grade textbooks and mathematics training programs showed that they contained a sufficient number of practical content tasks, and mastery of practical content tasks is provided in all grades. In order to improve the situation, the teacher should not avoid working with these tasks; lessons should be planned in such a way that the problems of practical content are considered and involved in the educational process systematically, throughout the years of teaching mathematics.uk_UA
dc.identifier.citationЯковлєва, О. М. Аналіз завдань практичного змісту ЗНО з математики 2017–2019 років [Текст] / О. М. Яковлєва, В. М. Каплун // Фізико-математична освіта : науковий журнал / Міністерство освіти і науки України, Сумський державний педагогічний університет імені А. С. Макаренка, Фізико-математичний факультет ; [редкол.: М. П. Вовк, М. Гр. Воскоглу, Т. Г. Дерека та ін.]. – Суми : [СумДПУ імені А. С. Макаренка], 2019. – Вип. 4 (22). – С. 142–149. – DOI: 10.31110/2413-1571-2019-022-4-022.uk_UA
dc.identifier.doi10.31110/2413-1571-2019-022-4-022
dc.identifier.orcid0000-0003-0750-9769
dc.identifier.urihttps://repository.sspu.edu.ua/handle/123456789/8514
dc.language.isoukuk_UA
dc.publisherСумДПУ імені А. С. Макаренкаuk_UA
dc.subjectзавдання практичного змістуuk_UA
dc.subjectматематикаuk_UA
dc.subjectзовнішнє незалежне оцінюванняuk_UA
dc.subjectкласифікаціяuk_UA
dc.subjectаналізuk_UA
dc.subjectpractical content tasksuk_UA
dc.subjectmathematicsuk_UA
dc.subjectexternal independent evaluationuk_UA
dc.subjectclassificationuk_UA
dc.subjectanalysisuk_UA
dc.titleАналіз завдань практичного змісту ЗНО з математики 2017–2019 роківuk_UA
dc.title.alternativeAnalysis of Practical Content Tasks of EIT in Mathematics 2017–2019uk_UA
dc.typeArticleuk_UA
dc.udc.udc372.851uk_UA
Файли
Контейнер файлів
Зараз показуємо 1 - 1 з 1
Вантажиться...
Ескіз
Назва:
Yakovlieva_Kaplun.pdf
Розмір:
1.76 MB
Формат:
Adobe Portable Document Format
Опис:
Ліцензійна угода
Зараз показуємо 1 - 1 з 1
Ескіз недоступний
Назва:
license.txt
Розмір:
2.99 KB
Формат:
Item-specific license agreed upon to submission
Опис: