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Topological and metric properties of
distributions of random variables represented by
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Abstract. In the paper we consider the distributions of random variables represented by the
alternating Lüroth series (eL-expansion). We study Lebesgue structure, topological, met-
ric and fractal properties of these random variables. We prove that random variable with
independent eL-symbols has a pure discrete, pure absolutely continuous or pure singu-
larly continuous distribution. We describe topological and metric properties of the spectra
of distributions of random variables as well as properties of their probability distribution
functions.
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Introduction

In 1883 J. Lüroth introduced the sign positive series expansion [4], members of
which are inverse numbers to positive integers. J. Galambos, K. Dajani, C. Kraai-
kamp, C. Ganatsiou and others investigated the Lüroth sign positive expansion.
S. Kalpazidou, A. Knopfmacher, and J. Knopfmacher introduced a Lüroth-type
alternating expansion [2, 3]. They proved that for any real number x 2 .0; 1� there
exists either finite tuple of positive integers .a1; a2; : : : ; an/ or a sequence of pos-
itive integers .an/, an D an.x/, such that

x D
1

a1
C

X
n�2

.�1/n�1

a1.a1 C 1/ : : : an�1.an�1 C 1/an
: (0.1)

Moreover, each irrational number has a unique infinite and non-periodic represen-
tation and each rational number has either finite or periodic representation.
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386 M. Pratsiovytyi and Y. Khvorostina

Equality (0.1) is called the alternating Lüroth series representation or eL-expan-
sion for number x. We will write symbolically

x D �
�L
a1a2:::ak :::

:

Recently the present authors [6] introduced and studied the set of incomplete sums
of the alternating Lüroth series and probability on it.

Let .�k/ be a sequence of independent random variables taking the values
1; 2; : : : ; i; : : : with probabilities p1k; p2k; : : : ; pik; : : : respectively,

pik � 0; p1k C p2k C � � � D 1 for all k 2 N:

This paper is devoted to study of the Lebesgue structure (content of discrete, abso-
lutely continuous and singular components), topological, metric and fractal prop-
erties of the random variable

� D �
�L
�1�2:::�k :::

:

1 Geometry of the eL-representation of a real number x 2 .0; 1�

Definition 1.1. Let .c1; c2; : : : ; cn/ be a given tuple of positive integers. The cylin-
der of n-th rank with the base c1; c2; : : : ; cn is the set

�
�L
c1c2:::cn

D
®
x W x D eL.c1; c2; : : : ; cn; anC1; anC2 : : : /; anCi 2 N; 8i 2 N

¯
:

Cylinders have the following properties [6]:

(1) ��L
c1:::cn

D
S1
iD1�

�L
c1:::cni

:

(2) sup��L
c1:::c2m�1i

D inf��L
c1:::c2m�1.iC1/

, inf��L
c1:::c2mi

D sup��L
c1:::c2m.iC1/

:

(3) The cylinder��L
c1:::cn

is a half-open interval .l1; l2� if n is odd or half-closed in-
terval Œl2; l1/ if n is even, where l1 D eL.c1; : : : ; cn C 1/; l2 D eL.c1; : : : ; cn/:

(4) diam�
�L
c1:::cn

� j�
�L
c1:::cn

j D
1

c1.c1C1/:::cn.cnC1/
�

1
2n

n!1
����! 0:

(5) If dj .a/ D dj .b/ for j < m and dm.a/ > dm.b/, then a < b form D 2n � 1
and a > b for m D 2n.

(6) Any permutation of eL-symbols in the base of cylinder does not change its
length.

(7) The following equivalence holds:

j�
�L
c1:::cmi

j

j�
�L
c1:::cm

j

D
1

i.i C 1/
” j�

�L
c1:::cmi

j D
1

i.i C 1/
j�

�L
c1:::cm

j:
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Random variables represented by the alternating Lüroth series 387

(8) We have

j�
�L
c1:::cma

j D

1X
jDa.aC1/

j�
�L
c1:::cmj

j:

(9) It holds
j�

�L
c1:::cm.iC1/

j

j�
�L
c1:::cmi1

j

D
2i

i C 2
:

Let .Vn/ be a sequence of subsets of N. The set C ŒeL; .Vn/� is defined by the
equality

C ŒeL; .Vn/� D ®x W x D ��L
a1a2:::an:::

; an.x/ 2 Vk � N; n D 1; 2; : : :
¯
:

Theorem 1.2. The set C ŒeL; .Vn/� is:

(1) a half-interval .0; 1� to within a calculating set if all Vn D N, n 2 N,

(2) the union of cylinders of rank m if Vj D N for j > m,

(3) a nowhere dense set if Vn 6D N for infinitely many n; moreover, the Lebesgue
measure of the set is defined by the equality

�.C ŒeL; .Vn/�/ D 1Y
nD1

�
1 �

�.F n/

�.Fn�1/

�
;

where

Fn D
[
a12V1

[
a22V2

� � �

[
an2Vn

�
�L
a1:::an

; F n D Fn�1nFn:

Proof. Statements (1) and (2) are evident due to the previous theorem and the
equality

C ŒeL; .Vn/� D [
i12V1

� � �

[
im2Vm

�
�L
i1:::im

:

(3) For any interval .a; b/ � .0; 1�, it is easy to find a cylinder��L
c1:::ck

� .a; b/.
Then the interval

.˛; ˇ/ � int�
�L
c1:::ck :::cn�1j

; where Vn 6D N and j 2 NnVn;

does not contain any point of the set C ŒeL; .Vn/�. So, this set is nowhere dense by
definition.
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The following equality follows from the definition of sets C ŒeL; .Vn/�, Fn and
F n and the continuity of the Lebesgue measure �:

�.C ŒeL; ¹Vnº�/ D lim
n!1

�.Fn/

D lim
n!1

�.Fn/

�.Fn�1/
�
�.Fn�1/

�.F �n�2/
� � �
�.F2/

�.F1/
�
�.F1/

�.F0/

D lim
n!1

nY
iD1

�.Fi /

�.Fi�1/

D

1Y
nD1

�.Fn/

�.Fn�1/
D

1Y
nD1

�
1 �

�.F n/

�.Fn�1/

�
:

Corollary 1.3. The set

C ŒeL; V � D ®x W x D ��L
a1a2:::an:::

; an.x/ 2 V � N
¯

is:

(1) a half-interval .0; 1� to within a calculating set, when V D N,

(2) a nowhere dense nonclosed set of zero Lebesgue measure coinciding with its
closure with respect to countable set when V 6D N,

(3) self-similar if V is a finite set and N-self-similar if V is an infinite set; more-
over, its self-similar (N-self-similar) dimension ˛s is a solution of the equationX

v2V

�
1

v.v C 1/

�x
D 1 if jV j <1; (1.1)

and

˛s D sup
n

²
x W

X
vWV 3v�n

�
1

v.v C 1/

�x
D 1

³
if jV j D 1: (1.2)

2 Structure and properties of the probability distribution function
of the random variable with independent elements of the
alternating Lüroth series

We consider the random variable � D ��L
�1�2:::�k :::

, where .�k/ is a sequence of
independent random variables taking the values 1; 2; : : : ; i; : : : with probabilities
p1k; p2k; : : : ; pik; : : : respectively, pik � 0, p1k C p2k C � � � D 1 for all k 2 N.
The numbers pmk completely determine the distribution of the random variable �.
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Random variables represented by the alternating Lüroth series 389

Theorem 2.1. If the random variable � has a uniform distribution on Œ0; 1�, then
the eL-symbols �k .k D 1; 2; : : : / are independent and identically distributed;
moreover,

P ¹�k D iº D
1

i.i C 1/
; i D 1; 2; : : : :

Proof. Since � has a uniform distribution on Œ0; 1�, we have

(1) P ¹� D aº D 0 for any a 2 Œ0; 1�,

(2) P ¹� 2 .a; b/º D P ¹� 2 Œa; b�º D P.Œa; b�/ D b � a.

From property (4) of the cylinders ��L
c1:::cm

it follows that

P.�
�L
c1:::cm

/ D j�
�L
c1:::cm

j D

mY
iD1

1

ci .ci C 1/
:

Since the distribution of the random variable � is continuous, we get

P ¹�1 D iº D P ¹� 2 �
�L
i º D P.�

�L
i / D j�

�L
i j D

1

i.i C 1/

and

P ¹�2 D iº D P

´
� 2

1[
jD1

�
�L
ji

µ
D P

 
1[
jD1

�
�L
ji

!

D

1X
jD1

j�
�L
ji j D

1X
jD1

1

j.j C 1/i.i C 1/

D
1

i.i C 1/

1X
jD1

1

j.j C 1/
D

1

i.i C 1/
:

Similarly, we have

P ¹�kC1 D iº D P

´
� 2

1[
j1D1

� � �

1[
jkD1

�
�L
j1:::jki

µ
D

1X
j1D1

� � �

1X
jkD1

j�
�L
j1:::jki

j

D
1

i.i C 1/

1X
j1D1

� � �

1X
jkD1

1

j1.j1 C 1/ : : : jk.jk C 1/
D

1

i.i C 1/
:

Since the last probability does not depend on k and depends only on i , �k are
identically distributed.
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Let us prove that for any k; l 2 N, k < l , random variable �k does not depend
on the random variable �l and the following equality holds:

P ¹�1 D i; �2 D j º D P ¹�1 D iº � P ¹�2 D j º

and

P ¹�k D i; �l D j º

D P

´
� 2

1[
j1D1

� � �

1[
jk�1D1

1[
jkC1D1

� � �

1[
jl�1D1

�
�L
j1:::jk�1ijkC1:::jl�1j

µ

D

1X
j1D1

� � �

1X
jk�1D1

1X
jkC1D1

� � �

1X
jl�1D1

j�
�L
j1:::jk�1ijkC1:::jl�1j

j

D
1

i.i C 1/j.j C 1/

1X
j1D1

� � �

1X
jk�1D1

1X
jkC1D1

� � �

1X
jl�1D1

1

j1.j1 C 1/ : : : jk�1

�
1

.jk�1 C 1/jkC1.jkC1 C 1/ : : : jl�1.jl�1 C 1/

D
1

i.i C 1/
�

1

j.j C 1/
D P ¹�k D iº � P ¹�l D j º:

Theorem 2.2. The random variable � with independent eL-symbols has a discrete
distribution if and only if

1Y
kD1

max
m
pmk > 0: (2.1)

If the distribution is discrete, then the set of atoms of the distribution of the random
variable � consists of a point x0 such that pak.x0/k D maxm¹pmkº for any k 2 N;
and for all points x0 2 .0; 1/ one has pak.x0/k > 0 and there exists anm 2 N such
that aj .x0/ D aj .x0/ for j � m:

Proof. The number x is an atom of distribution of the random variable � if
1Y
kD1

pak.x/k > 0:

Necessity. Let the random variable � have a discrete distribution and let x be an
atom of distribution. Suppose that the infinite product (2.1) diverges to 0. Then

P ¹� D xº D

1Y
kD1

pak.x/k �

1Y
kD1

max
m
pmk D 0;
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but this contradicts the fact that x is an atom of distribution. Therefore, this con-
tradiction proves the necessity.

Sufficiency. Let the statement (2.1) hold. Let x0 differ from x0 for a finite number
of eL-symbols such that pak.x0/k > 0. Then x0 and all such x0 are atoms of the
distribution of � . Let us prove that the random variable � has a discrete distribution.

Let Dm be a set of all points x0 such that aj .x0/ D aj .x0/ for j � m: Then

P ¹� 2 Dmº D
X
a1.x0/

� � �

X
am�1.x0/

 
m�1Y
kD1

pak.x0/k �

1Y
kDm

pak.x0/k

!

D

m�1Y
kD1

X
ak.x0/

pak.x0/k �

1Y
kDm

pak.x0/k D

1Y
kDm

pak.x0/k :

The set D D
S1
mD1Dm is at most countable because it is a countable union of

at most countable sets. Since

¹x0º D D1 � D2 � � � � � Dm � DmC1 � � � � ;

by the continuity of probability

P ¹� 2 Dº D lim
m!1

P ¹� 2 Dmº D lim
m!1

1Y
kDm

pak.x0/k D 1:

From the properties of the convergent infinite products it follows that the last limit
is equal to 1.

So the countable set D is the support of the distribution of the random vari-
able �, that is, the distribution of � is discrete.

Corollary 2.3. The random variable � has a continuous distribution if and only if
the infinite product (2.1) is equal to 0.

Theorem 2.4. A continuous random variable � with independent eL-symbols has
either a pure absolutely continuous or a pure singularly continuous distribution.

Proof. Let ı D .ı1 : : : ın/ be an ordered tuple of positive integers and let T n
ı

be
a transformation of a point x D eL.a1; : : : ; ak; : : : / such that

T nı .x/ �
eL.ı1 : : : ın; a1; : : : ; ak; : : : /:

It is evident that the point x0 D �
�L
.ı1:::ın/

having a pure periodiceL-expansion with
period .ı1 : : : ın/ is an invariant point of T n

ı
-transformation.

The T n
ı

-transformation of the set E is the set of T n
ı

-images of all x 2 E, i.e.,

T nı .E/ D ¹u W u D T
n
ı .x/; where x 2 Eº:
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It is easy to see that
T nı .0I 1/ D �

L
ı1:::ın

and T n
ı

-transformation is the similarity transformation with coefficient

k D

nY
iD1

1

ıi .ıi C 1/
:

It is evident that �ŒT n
ı
.E/� D k�.E/; where � is Lebesgue measure. Therefore

�ŒT n
ı
.E/� and �.E/ are equal to zero simultaneously. Let

T n.E/ D
[

ı1;:::;ın

T nı .E/; T .E/ D
[
n

T .E/:

We consider the event A D ¹� 2 T .E/º: The event A is generated by the se-
quence of independent random variables �k and does not depend on all � -algebras
Bk generated by �1, . . . , �k . So, A is residual. Therefore, from the Kolmogorov’s
law of 0 and 1 [5] it follows that P.A/ D 0 or P.A/ D 1.

Only one of the two cases is possible:

(1) there exists a set E such that �.E/ D 0 and P ¹� 2 Eº > 0;

(2) for an arbitrary set E such that �.E/ D 0 we have P ¹� 2 Eº D 0.

In the first case the equality �.E/ D 0 implies that �.T .E// D 0. Therefore, there
is a set T .E/ such that �.T .E// D 0 and P ¹� 2 T .E/º D 1. So, � has a pure
singularly continuous distribution by definition. In the second case the distribu-
tion is pure absolutely continuous by definition. So, the distribution of the random
variable � is pure.

Theorem 2.5. The continuous distribution of the random variable � is pure abso-
lutely continuous if and only if

1Y
kD1

 
1X
mD1

r
pmk

m.mC 1/

!
> 0: (2.2)

Proof. Let ¹.�k; Bk; �k/º and ¹.�k; Bk; �k/º be sequences of probability spaces
such that

� �k D N, Bk is a � -algebra of all subsets of �k ,

� �k.m/ D pmk , �k.m/ D 1
m.mC1/

, k 2 N,

where pmk is an element of the matrix kpikk that determines the distribution of
the random variable �.
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It is evident that �k � �k for all k 2 N: Let us consider the infinite products
of probability spaces

.�;B;�/ D

1Y
kD1

.�k; Bk; �k/; .�;B; �/ D

1Y
kD1

.�k; Bk; �k/:

By using Kakutani’s theorem [1], we have �� � if and only if
1Y
kD1

�.�k; �k/ > 0;

where

�.�k; �k/ D

Z
�k

s
d�k

d�k
d�k

is the Hellinger integral. In this case

1Y
kD1

Z
�k

s
d�k

d�k
d�k > 0 ”

1Y
kD1

 
1X
mD1

r
pmk

m.mC 1/

!
> 0:

Therefore, from the condition (2.2) it follows that the measure � is absolutely
continuous with respect to the measure �.

Let us consider the mapping f : �! Œ0I 1� such that

f .!/ D �
�L
!1:::!k :::

for all ! D .!1; : : : ; !k; : : : / 2 �:

For any Borel set E, we define the measures �� and �� as the image measures
of � and � under f :

��.E/ D �.f �1.E//; ��.E/ D �.f �1.E//:

The measure �� coincides with the probabilistic measure P� and the measure ��

coincides with the probabilistic measure P , which is equivalent to the Lebesgue
measure �. From the absolutely continuity of the measure � with respect to the
measure � it follows that the measure �� is absolutely continuous with respect
to the measure ��. Since �� � �, from condition (2.2) it follows that the random
variable � is of pure absolutely continuous distribution.

Corollary 2.6. The continuous distribution of the random variable � is pure sin-
gularly continuous if and only if

1Y
kD1

 
1X
mD1

r
pmk

m.mC 1/

!
D 0:
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Lemma 2.7. At a point x D ��L
a1a2:::ak :::

, the probability distribution function F�
of the random variable � is of the following form:

F�.x/ D ˇa1.x/1 C

1X
kD2

 
ˇak.x/k

k�1Y
jD1

paj .x/j

!
; (2.3)

where

ˇak.x/k D

8<:
P1
jDak.x/C1

pjk; if k D 2m � 1;Pak.x/�1
jD1 pjk; if k D 2m; m 2 N:

Proof. By the definition of the probability distribution function of random vari-
able, F�.x/ D P ¹� < xº.

Since for the point x D eL.a1.x/; a2.x/; : : : ; ak.x/; : : : / the event ¹� < xº is
a union of exclusive events

¹� < xº D ¹�1 > a1.x/º [ ¹�1 D a1.x/; �2 < a2.x/º

[ � � � [ ¹�1 D a1.x/; : : : ; �2k�2 D a2k�2.x/; �2k�1 > a2k�1.x/º

[ ¹�1 D a1.x/; : : : ; �2k�1 D a2k�1.x/; �2k < a2k.x/º [ � � � ;

we have

F�.x/ D

1X
jDa1.x/C1

pj1 C

a2.x/�1X
jD1

pj2 � pa1.x/1

C � � � C

1X
jDa2k�1.x/C1

pj;2k�1 �

2k�2Y
jD1

paj .x/j

C

a2k.x/�1X
jD1

pj;2k �

2k�1Y
jD1

paj .x/j C � � �

D ˇa1.x/1 C

1X
kD2

 
ˇak.x/k

k�1Y
jD1

paj .x/j

!
:

Corollary 2.8. The change ı in the probability distribution function F� on the
cylinder ��L

c1c2:::cm
is calculated by the formula

ı � ı.�
�L
c1c2:::cm

/ D

mY
iD1

pci i :
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Corollary 2.9. If pck D 0, then the distribution function F� is constant on each
cylinder ��L

c1c2:::ck�1c
.

Lemma 2.10. If the probability distribution function F� has a derivative (finite or
infinite) at a point x0 D �

�L
a1a2:::an:::

, then

F 0�.x0/ D

1Y
iD1

.ai .ai C 1/pai i /:

Proof. In fact, if F 0
�
.x0/ exists, then

F 0�.x0/ D lim
x0<x0<x

00

x00�x0!0

F�.x
00/ � F�.x

0/

x00 � x0
D lim
n!1

ı.�
�L
a1:::am

/

j�La1:::am
j

D lim
m!1

mY
iD1

.ai .ai C 1/pai i /:

3 Topological and metric properties of a singular distribution of
the random variable �

Let us recall [5] that there are three types of singular probability distributions
according to topological and metric properties of their spectra. The singular prob-
ability distribution of the random variable is called:

(1) the distribution of Cantor type (or C -type) if its spectrum S� is a set of zero
Lebesgue measure,

(2) the distribution of Salem type (or S -type) if its spectrum S� contains closed
intervals,

(3) the distribution of quasi-Cantor type (or P -type) if its spectrum S� is a no-
where dense set of positive Lebesgue measure.

By definition, the spectrum of the distribution of the random variable is a mini-
mal closed support of the distribution. Also the spectrum is a set of growth points
of the probability distribution function.

Lemma 3.1. The spectrum S� of the distribution of the random variable � is the
closure of the set

B� D
®
x W x D �

�L
a1a2:::an:::

; where pan.x/n > 0 for all n 2 N
¯
D C ŒeL; .Vn/�:

Proof. Generally speaking, the set B� is not closed. So, to prove the lemma it is
enough to show that B� � S� and any internal point of the set Œ0; 1�nB� does not
belong to S� .
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Let x0 be a point such that paj .x0/j > 0 for any j 2 N. Let us show that x0

belongs to the spectrum S� .
By definition, the point x0 is a point of growth of the probability distribution

function F� if for any " > 0 the following inequality holds:

F�.x
0
C "/ � F�.x

0
� "/ > 0:

For any " > 0, there exists a cylinder ��L
c1c2:::cm

such that

�
�L
c1c2:::cm

� .x0 � "; x0 C "/

and x0 2 ��L
c1c2:::cm

. Then

F�.x
0
C "/ � F�.x

0
� "/ � ı

�
.x0 � "; x0 C "/

�
� ı.�

�L
c1c2:::cm

/ D

mY
iD1

pci i > 0:

If the point x0 2 Œ0; 1�nB� is not the endpoint of any cylinder and there exists
paj .x0/j D 0, then from Corollary 2.9 of Lemma 2.7 it follows that x0 belongs to
the interval rc1c2:::cm

� int�c1c2:::cm
. For " > 0 such that

.x0 � "; x0 C "/ � rc1c2:::cm

we have
F�.x

0
C "/ � F�.x

0
� "/ � ı.�Lc1c2:::cm

/ D 0:

Thus x0 … S� :

Theorem 3.2. The spectrum S� of the distribution of the random variable � is:

(1) the closed interval Œ0; 1� if the matrix kpikk does not contain zeros,

(2) the union of closed intervals if the matrix kpikk has zeros only in a finite
number of columns,

(3) a nowhere dense set, and the Lebesgue measure is calculated by the formula

�.S�/ D

1Y
kD1

Wk; where Wk D
X

i Wpik>0

1

i.i C 1/
; k 2 N; (3.1)

if the matrix kpikk contains zeros in an infinite number of columns.

Proof. Statement (1) is obvious.
(2) Let pik > 0 for i 2 N, k � m. Since

P ¹� 2 �
�L
c1:::cmimC1:::imCn

º D

� Y
ci Wpci i>0

pci i

�
�

mCnY
jDmC1

pij j > 0

for any tuple of positive integers .imC1; : : : ; imCn/, n 2 N, we have that F� is
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strictly increasing on each cylinder��L
c1:::cm

such that pckk > 0, k D 1; : : : ; m�1.
That is, S� is the closure of the set[

ci Wpci i>0

�
�L
c1:::cm

:

(3) From the definition of the spectrum S� and Lemma 2.7 it follows that for
any k 2 N,

S� \�
�L
a1:::ak

´
D ¿ if there exists an m � k such that pamm D 0,
6D ¿ if

Qk
jD1 paj j > 0:

Then

�.S�/ D 1 �

 X
a1Wpa11D0

j�
�L
a1
j C

X
a1Wpa11>0

a2Wpa22D0

j�
�L
a1a2
j

C

X
a1;a2Wpa11pa22>0

a3Wpa33D0

j�
�L
a1:::ak

j C � � �

!

D 1 �M1 �W1M2 �W1W2M3 � � � �

D W1 �W1M2 �W1W2M3 � � � �

D W1W2 �W1W2M3 � � � � D

1Y
kD1

Wk;

where Mk D
P
i WpikD0

1
i.iC1/

D 1 �Wk , k 2 N.

Corollary 3.3. Spectrum of the distribution of the random variable � is the set of
zero Lebesgue measure if and only if

1X
kD1

Mk D1:

This corollary follows from the theorem on the relation between infinite prod-
ucts and infinite series.

Theorem 3.4. The singular distribution of the random variable � is a singular
distribution:

(1) of C -type if and only if the infinite product (3.1) diverges,
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(2) of S -type if and only if the matrix kpikk has a finite number of columns con-
taining zeros,

(3) P -type if and only if the infinite product (3.1) converges and the matrix kpikk
has an infinite number of columns containing zeros.

Proof. Theorem 3.4 is a consequence of Theorem 3.2. In fact, if the matrix kpikk
has only a finite number of columns containing zeros, then the spectrum of the
distribution of � is the union of closed intervals and the distribution is of S -type.
If the matrix kpikk has an infinite number of such columns, then the spectrum
is a nowhere dense set. Moreover, the spectrum is a set of zero Lebesgue mea-
sure if the infinite product in (3.1) diverges to zero. So, � has the distribution of
C -type. The spectrum is a set of positive Lebesgue measure if the infinite product
in (3.1) converges. So, � has the distribution of P -type. Since these conditions are
incompatible, this proves the theorem.

4 Distributions of random variables with identically distributedeL-symbols

Let �0 D �
�L
�1�2:::�k :::

be a random variable such that the eL-symbols �k are in-
dependent and identically distributed, i.e., P ¹�k D iº D pik D pi . Then in the
formula of the probability distribution function we have

ˇak.x/k � ˇak.x/ D

8<:
P1
jDak.x/C1

pj ; if k D 2m � 1;Pak.x/�1
jD1 pj ; if k D 2m; m 2 N:

From Theorems 2.1 and 2.2 follows that the distribution of the random vari-
able �0 is a degenerate distribution (discrete distribution with a single atom) if
maxi pi D 1 or a uniform distribution if pi D 1

i.iC1/
for all i 2 N or a singular

continuous distribution in other cases.
Thus singularity dominates in the studied class of distributions of random vari-

ables.

Lemma 4.1. The graph � of the probability distribution function is an N-self-
affine set of the space R2 and

� D

1[
iD1

'i .�/; (4.1)

where

'i W

´
x0 D 1�x

i.iC1/
C

1
iC1

;

y0 D pi .1 � y/C ˇi ;
'i .�/ \ 'iC1.�/ D Ci

�
1

i C 1
Iˇi

�
: (4.2)
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Proof. To prove equality (4.1) we firstly show that

'1.�/ [ '2.�/ [ � � � [ 'n.�/ [ � � � � G � �:

To this end we consider any point M of the graph �

M.xIF�0
.x//

'i
�!Mi

�
1 � x

i.i C 1/
C

1

i C 1
Iˇi C pi .1 � F�0

.x//

�
D 'i .M/ 2 �:

Now we show that � � G. Let M.xI F�0
.x// 2 � . We consider the number

x1 D �
�L
a2.x/a3.x/:::

. Since d1.x/ 2 N, we have

F�0
.x/ D ˇi C pi .1 � F�0

.x//:

From M.x1IF�0
.x// 2 � it follows that

'i .M/ DM.xIF�0
.x// 2 G:

Equality (4.1) is proved.
Since

O.0I 0/
'i
�! Ci�1

�
1

i
Iˇi�1

�
; C.1I 1/

'i
�! Ci

�
1

i C 1
Iˇi

�
; i 2 N;

we have equality (4.2).

Theorem 4.2. The definite Lebesgue integral of the probability distribution func-
tion F�0

on the closed interval Œ0; 1� is calculated by the formulaZ 1

0

F�0
.x/dx D

P1
iD1

ˇi�1

i.iC1/

1C
P1
iD1

pi

i.iC1/

: (4.3)

Proof. Since the Lebesgue integral has the additive property, we have

I �

Z 1

0

F�0
.x/dx

D

1X
iD1

Z 1
i

1
iC1

Œˇi C pi .1 � F�0
.�

�L
d2d3:::dn:::

//�dx

D

1X
iD1

ˇi

i.i C 1/
C

 
1X
iD1

pi

i.i C 1/

!
�

�
1 �

Z 1

0

F�0
.x/dx

�

D

1X
iD1

ˇi

i.i C 1/
C

1X
iD1

pi

i.i C 1/
�

 
1X
iD1

pi

i.i C 1/

!
�

Z 1

0

F�0
.x/dx:
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Then  
1C

1X
iD1

pi

i.i C 1/

!
� I D

1X
iD1

ˇi�1

i.i C 1/
:

So, we have (4.3).

Theorem 4.3. The probability distribution function of the random variable �0 with
independent identically distributed eL-symbols preserves the Hausdorff–Besico-
vitch dimension if and only if pi D 1

i.iC1/
for any i 2 N.

Proof. Necessity. If pi D 1
i.iC1/

for all i 2N, thenF�.x/D x. The functionF�.x/
is an identical transformation on .0; 1�. Then the probability distribution function
preserves the Hausdorff–Besicovitch dimension.

Sufficiency. Suppose that the probability distribution function preserves the
Hausdorff–Besicovitch dimension and there exists a j 2 N such that

pj ¤
1

j.j C 1/
:

Without loss of generality we assume that

pj <
1

j.j C 1/
: (4.4)

Then there exists pm > 1
m.mC1/

.
In fact, if pi � 1

i.iC1/
for i ¤ j , then

1 � pj D
X

i¤j2N

pi �
X

i¤j2N

1

i.i C 1/
D 1 �

1

j.j C 1/
:

This contradicts inequality (4.4).
Let us consider pc where j ¤ c ¤ m. Then

pc �
1

c.c C 1/
or pc �

1

c.c C 1/
:

We choose two numbers among the numbers pj ; pm; pc such that the inequalities
of the same sign hold. Let pl and pk be such numbers.

Let us consider the set C ŒeL; V � containing only numbers whose eL-symbols be-
longs to the set V D ¹l; kº. It is a self-similar fractal. The Hausdorff–Besicovitch
dimension of C ŒeL; V � coincides with the self-similar dimension and is a solution
of the equation �

1

l.l C 1/

�x
C

�
1

k.k C 1/

�x
D 1:
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The image of this set under the transformation F� is also self-similar fractal
such that the Hausdorff–Besicovitch dimension is a solution of the equation

pxl C p
x
k D 1:

But it is obvious that these numbers do not coincide.
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