Topological and metric properties of distributions of random variables represented by the alternating Lüroth series with independent elements

Mykola Pratsiovytyi and Yuriy Khvorostina

Communicated by Vyacheslav L. Girko

Abstract

In the paper we consider the distributions of random variables represented by the alternating Lüroth series (\widetilde{L}-expansion). We study Lebesgue structure, topological, metric and fractal properties of these random variables. We prove that random variable with independent \widetilde{L}-symbols has a pure discrete, pure absolutely continuous or pure singularly continuous distribution. We describe topological and metric properties of the spectra of distributions of random variables as well as properties of their probability distribution functions.

Keywords. Expansions of numbers by alternating Lüroth series, geometry of \widetilde{L}-representation, absolutely continuous probability distribution, singular probability distribution, Lebesgue structure of probability distribution.

2010 Mathematics Subject Classification. 11K55, 26A30, 28A80, 60E10.

Introduction

In 1883 J. Lüroth introduced the sign positive series expansion [4], members of which are inverse numbers to positive integers. J. Galambos, K. Dajani, C. Kraaikamp, C. Ganatsiou and others investigated the Lüroth sign positive expansion. S. Kalpazidou, A. Knopfmacher, and J. Knopfmacher introduced a Lüroth-type alternating expansion $[2,3]$. They proved that for any real number $x \in(0,1]$ there exists either finite tuple of positive integers $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ or a sequence of positive integers $\left(a_{n}\right), a_{n}=a_{n}(x)$, such that

$$
\begin{equation*}
x=\frac{1}{a_{1}}+\sum_{n \geq 2} \frac{(-1)^{n-1}}{a_{1}\left(a_{1}+1\right) \ldots a_{n-1}\left(a_{n-1}+1\right) a_{n}} \tag{0.1}
\end{equation*}
$$

Moreover, each irrational number has a unique infinite and non-periodic representation and each rational number has either finite or periodic representation.

Equality (0.1) is called the alternating Lüroth series representation or \widetilde{L}-expansion for number x. We will write symbolically

$$
x=\Delta_{a_{1} a_{2} \ldots a_{k} \ldots}^{\widetilde{L}}
$$

Recently the present authors [6] introduced and studied the set of incomplete sums of the alternating Lüroth series and probability on it.

Let $\left(\eta_{k}\right)$ be a sequence of independent random variables taking the values $1,2, \ldots, i, \ldots$ with probabilities $p_{1 k}, p_{2 k}, \ldots, p_{i k}, \ldots$ respectively,

$$
p_{i k} \geq 0, \quad p_{1 k}+p_{2 k}+\cdots=1 \quad \text { for all } k \in \mathbb{N}
$$

This paper is devoted to study of the Lebesgue structure (content of discrete, absolutely continuous and singular components), topological, metric and fractal properties of the random variable

$$
\xi=\Delta_{\eta_{1} \eta_{2} \ldots \eta_{k} \ldots}^{\widetilde{L}}
$$

1 Geometry of the \widetilde{L}-representation of a real number $x \in(0,1]$

Definition 1.1. Let $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ be a given tuple of positive integers. The cylinder of n-th rank with the base $c_{1}, c_{2}, \ldots, c_{n}$ is the set

$$
\Delta_{c_{1} c_{2} \ldots c_{n}}^{\widetilde{L}}=\left\{x: x=\widetilde{L}\left(c_{1}, c_{2}, \ldots, c_{n}, a_{n+1}, a_{n+2} \ldots\right), a_{n+i} \in \mathbb{N}, \forall i \in \mathbb{N}\right\}
$$

Cylinders have the following properties [6]:
(1) $\Delta_{c_{1} \ldots c_{n}}^{\widetilde{L}}=\bigcup_{i=1}^{\infty} \Delta_{c_{1} \ldots c_{n} i}^{\widetilde{L}}$.
(2) $\sup \Delta_{c_{1} \ldots c_{2 m-1} i}^{\widetilde{L}}=\inf \Delta_{c_{1} \ldots c_{2 m-1}(i+1)}^{\widetilde{L}}, \inf \Delta_{c_{1} \ldots c_{2 m} i}^{\widetilde{L}}=\sup \Delta_{c_{1} \ldots c_{2 m}(i+1)}^{\widetilde{L}}$.
(3) The cylinder $\Delta_{c_{1} \ldots c_{n}}^{\widetilde{L}}$ is a half-open interval $\left(l_{1}, l_{2}\right]$ if n is odd or half-closed interval $\left[l_{2}, l_{1}\right)$ if n is even, where $l_{1}=\widetilde{L}\left(c_{1}, \ldots, c_{n}+1\right), l_{2}=\widetilde{L}\left(c_{1}, \ldots, c_{n}\right)$.
(4) $\operatorname{diam} \Delta_{c_{1} \ldots c_{n}}^{\widetilde{L}} \equiv\left|\Delta_{c_{1} \ldots c_{n}}^{\widetilde{L}}\right|=\frac{1}{c_{1}\left(c_{1}+1\right) \ldots c_{n}\left(c_{n}+1\right)} \leq \frac{1}{2^{n}} \xrightarrow{n \rightarrow \infty} 0$.
(5) If $d_{j}(a)=d_{j}(b)$ for $j<m$ and $d_{m}(a)>d_{m}(b)$, then $a<b$ for $m=2 n-1$ and $a>b$ for $m=2 n$.
(6) Any permutation of \widetilde{L}-symbols in the base of cylinder does not change its length.
(7) The following equivalence holds:

$$
\frac{\left|\Delta_{c_{1} \ldots c_{m} i}^{\widetilde{L}}\right|}{\left|\Delta_{c_{1} \ldots c_{m}}^{\widetilde{L}}\right|}=\frac{1}{i(i+1)} \Longleftrightarrow\left|\Delta_{c_{1} \ldots c_{m} i}^{\widetilde{L}}\right|=\frac{1}{i(i+1)}\left|\Delta_{c_{1} \ldots c_{m}}^{\widetilde{L}}\right|
$$

(8) We have

$$
\left|\Delta_{c_{1} \ldots c_{m} a}^{\widetilde{L}}\right|=\sum_{j=a(a+1)}^{\infty}\left|\Delta_{c_{1} \ldots c_{m} j}^{\widetilde{L}}\right| .
$$

(9) It holds

$$
\frac{\left|\Delta_{c_{1} \ldots c_{m}(i+1)}^{\widetilde{L}}\right|}{\left|\Delta_{c_{1} \ldots c_{m} i 1}\right|}=\frac{2 i}{i+2}
$$

Let $\left(V_{n}\right)$ be a sequence of subsets of \mathbb{N}. The set $C\left[\widetilde{L},\left(V_{n}\right)\right]$ is defined by the equality

$$
C\left[\widetilde{L},\left(V_{n}\right)\right]=\left\{x: x=\Delta_{a_{1} a_{2} \ldots a_{n} \ldots}^{\widetilde{L}}, a_{n}(x) \in V_{k} \subset \mathbb{N}, n=1,2, \ldots\right\}
$$

Theorem 1.2. The set $C\left[\widetilde{L},\left(V_{n}\right)\right]$ is:
(1) a half-interval $(0,1]$ to within a calculating set if all $V_{n}=\mathbb{N}, n \in \mathbb{N}$,
(2) the union of cylinders of rank m if $V_{j}=\mathbb{N}$ for $j>m$,
(3) a nowhere dense set if $V_{n} \neq \mathbb{N}$ for infinitely many n; moreover, the Lebesgue measure of the set is defined by the equality

$$
\lambda\left(C\left[\widetilde{L},\left(V_{n}\right)\right]\right)=\prod_{n=1}^{\infty}\left[1-\frac{\lambda\left(\bar{F}_{n}\right)}{\lambda\left(F_{n-1}\right)}\right]
$$

where

$$
F_{n}=\bigcup_{a_{1} \in V_{1}} \bigcup_{a_{2} \in V_{2}} \cdots \bigcup_{a_{n} \in V_{n}} \Delta_{a_{1} \ldots a_{n}}^{\widetilde{L}}, \quad \bar{F}_{n}=F_{n-1} \backslash F_{n}
$$

Proof. Statements (1) and (2) are evident due to the previous theorem and the equality

$$
C\left[\widetilde{L},\left(V_{n}\right)\right]=\bigcup_{i_{1} \in V_{1}} \cdots \bigcup_{i_{m} \in V_{m}} \Delta_{i_{1} \ldots i_{m}}^{\widetilde{L}}
$$

(3) For any interval $(a, b) \subset(0,1]$, it is easy to find a cylinder $\Delta_{c_{1} \ldots c_{k}}^{\widetilde{L}} \subset(a, b)$. Then the interval

$$
(\alpha, \beta) \equiv \operatorname{int} \Delta_{c_{1} \ldots c_{k} \ldots c_{n-1} j}^{\widetilde{L}}, \quad \text { where } V_{n} \neq \mathbb{N} \text { and } j \in \mathbb{N} \backslash V_{n}
$$

does not contain any point of the set $C\left[\widetilde{L},\left(V_{n}\right)\right]$. So, this set is nowhere dense by definition.

The following equality follows from the definition of sets $C\left[\widetilde{L},\left(V_{n}\right)\right], F_{n}$ and \bar{F}_{n} and the continuity of the Lebesgue measure λ :

$$
\begin{aligned}
\lambda\left(C\left[\widetilde{L},\left\{V_{n}\right\}\right]\right) & =\lim _{n \rightarrow \infty} \lambda\left(F_{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{\lambda\left(F_{n}\right)}{\lambda\left(F_{n-1}\right)} \cdot \frac{\lambda\left(F_{n-1}\right)}{\lambda\left(F \lambda_{n-2}\right)} \cdots \frac{\lambda\left(F_{2}\right)}{\lambda\left(F_{1}\right)} \cdot \frac{\lambda\left(F_{1}\right)}{\lambda\left(F_{0}\right)} \\
& =\lim _{n \rightarrow \infty} \prod_{i=1}^{n} \frac{\lambda\left(F_{i}\right)}{\lambda\left(F_{i-1}\right)} \\
& =\prod_{n=1}^{\infty} \frac{\lambda\left(F_{n}\right)}{\lambda\left(F_{n-1}\right)}=\prod_{n=1}^{\infty}\left[1-\frac{\lambda\left(\bar{F}_{n}\right)}{\lambda\left(F_{n-1}\right)}\right] .
\end{aligned}
$$

Corollary 1.3. The set

$$
C[\widetilde{L}, V]=\left\{x: x=\Delta_{a_{1} a_{2} \ldots a_{n} \ldots,}^{\widetilde{\widetilde{L}}}, a_{n}(x) \in V \subset \mathbb{N}\right\}
$$

is:
(1) a half-interval $(0,1]$ to within a calculating set, when $V=\mathbb{N}$,
(2) a nowhere dense nonclosed set of zero Lebesgue measure coinciding with its closure with respect to countable set when $V \neq \mathbb{N}$,
(3) self-similar if V is a finite set and \mathbb{N}-self-similar if V is an infinite set; moreover, its self-similar (\mathbb{N}-self-similar) dimension α_{S} is a solution of the equation

$$
\begin{equation*}
\sum_{v \in V}\left(\frac{1}{v(v+1)}\right)^{x}=1 \quad \text { if }|V|<\infty \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{s}=\sup _{n}\left\{x: \sum_{v: V \ni v \leq n}\left(\frac{1}{v(v+1)}\right)^{x}=1\right\} \quad \text { if }|V|=\infty . \tag{1.2}
\end{equation*}
$$

2 Structure and properties of the probability distribution function of the random variable with independent elements of the alternating Lüroth series

 independent random variables taking the values $1,2, \ldots, i, \ldots$ with probabilities $p_{1 k}, p_{2 k}, \ldots, p_{i k}, \ldots$ respectively, $p_{i k} \geq 0, p_{1 k}+p_{2 k}+\cdots=1$ for all $k \in \mathbb{N}$. The numbers $p_{m k}$ completely determine the distribution of the random variable ξ.

Theorem 2.1. If the random variable ξ has a uniform distribution on $[0,1]$, then the \widetilde{L}-symbols $\eta_{k}(k=1,2, \ldots)$ are independent and identically distributed; moreover,

$$
P\left\{\eta_{k}=i\right\}=\frac{1}{i(i+1)}, \quad i=1,2, \ldots
$$

Proof. Since ξ has a uniform distribution on $[0,1]$, we have
(1) $P\{\xi=a\}=0$ for any $a \in[0,1]$,
(2) $P\{\xi \in(a, b)\}=P\{\xi \in[a, b]\}=P([a, b])=b-a$.

From property (4) of the cylinders $\Delta_{c_{1} \ldots c_{m}}^{\widetilde{L}}$ it follows that

$$
P\left(\Delta_{c_{1} \ldots c_{m}}^{\widetilde{L}}\right)=\left|\Delta_{c_{1} \ldots c_{m}}^{\widetilde{L}}\right|=\prod_{i=1}^{m} \frac{1}{c_{i}\left(c_{i}+1\right)} .
$$

Since the distribution of the random variable η is continuous, we get

$$
P\left\{\eta_{1}=i\right\}=P\left\{\xi \in \Delta_{i}^{\widetilde{L}}\right\}=P\left(\Delta_{i}^{\widetilde{L}}\right)=\left|\Delta_{i}^{\widetilde{L}}\right|=\frac{1}{i(i+1)}
$$

and

$$
\begin{aligned}
P\left\{\eta_{2}=i\right\} & =P\left\{\xi \in \bigcup_{j=1}^{\infty} \Delta_{j i}^{\widetilde{L}}\right\}=P\left(\bigcup_{j=1}^{\infty} \Delta_{j i}^{\widetilde{L}}\right) \\
& =\sum_{j=1}^{\infty}\left|\Delta_{j i}^{\widetilde{L}}\right|=\sum_{j=1}^{\infty} \frac{1}{j(j+1) i(i+1)} \\
& =\frac{1}{i(i+1)} \sum_{j=1}^{\infty} \frac{1}{j(j+1)}=\frac{1}{i(i+1)}
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
P\left\{\eta_{k+1}=i\right\} & =P\left\{\xi \in \bigcup_{j_{1}=1}^{\infty} \cdots \bigcup_{j_{k}=1}^{\infty} \Delta_{j_{1} \ldots j_{k} i}^{\widetilde{L}}\right\}=\sum_{j_{1}=1}^{\infty} \cdots \sum_{j_{k}=1}^{\infty}\left|\Delta_{j_{1} \ldots j_{k} i}^{\widetilde{L}}\right| \\
& =\frac{1}{i(i+1)} \sum_{j_{1}=1}^{\infty} \cdots \sum_{j_{k}=1}^{\infty} \frac{1}{j_{1}\left(j_{1}+1\right) \ldots j_{k}\left(j_{k}+1\right)}=\frac{1}{i(i+1)}
\end{aligned}
$$

Since the last probability does not depend on k and depends only on i, η_{k} are identically distributed.

Let us prove that for any $k, l \in \mathbb{N}, k<l$, random variable η_{k} does not depend on the random variable η_{l} and the following equality holds:

$$
P\left\{\eta_{1}=i, \eta_{2}=j\right\}=P\left\{\eta_{1}=i\right\} \cdot P\left\{\eta_{2}=j\right\}
$$

and

$$
\begin{aligned}
& P\left\{\eta_{k}=i, \eta_{l}=j\right\} \\
& \quad=P\left\{\xi \in \bigcup_{j_{1}=1}^{\infty} \ldots \bigcup_{j_{k-1}=1}^{\infty} \bigcup_{j_{k+1}=1}^{\infty} \ldots \bigcup_{j_{l-1}=1}^{\infty} \Delta_{\left.j_{1} \ldots j_{k-1} i j_{k+1} \ldots j_{l-1} j\right\}}^{\widetilde{L}} \sum_{j_{1}=1}^{\infty} \cdots \sum_{j_{k-1}=1}^{\infty} \sum_{j_{k+1}=1}^{\infty} \cdots \sum_{j_{l-1}=1}^{\infty}\left|\Delta_{j_{1} \ldots j_{k-1}}^{\widetilde{L}} i_{j_{k+1} \ldots j_{l-1} j}\right|\right. \\
& = \\
& =\frac{1}{i(i+1) j(j+1)} \sum_{j_{1}=1}^{\infty} \ldots \sum_{j_{k-1}=1}^{\infty} \sum_{j_{k+1}=1}^{\infty} \cdots \sum_{j_{l-1}=1}^{\infty} \frac{1}{j_{1}\left(j_{1}+1\right) \ldots j_{k-1}} \\
& \quad \times \frac{1}{\left(j_{k-1}+1\right) j_{k+1}\left(j_{k+1}+1\right) \ldots j_{l-1}\left(j_{l-1}+1\right)} \\
& = \\
& =\frac{1}{i(i+1)} \cdot \frac{1}{j(j+1)}=P\left\{\eta_{k}=i\right\} \cdot P\left\{\eta_{l}=j\right\} .
\end{aligned}
$$

Theorem 2.2. The random variable ξ with independent \widetilde{L}-symbols has a discrete distribution if and only if

$$
\begin{equation*}
\prod_{k=1}^{\infty} \max _{m} p_{m k}>0 \tag{2.1}
\end{equation*}
$$

If the distribution is discrete, then the set of atoms of the distribution of the random variable ξ consists of a point x_{0} such that $p_{a_{k}\left(x_{0}\right) k}=\max _{m}\left\{p_{m k}\right\}$ for any $k \in \mathbb{N}$, and for all points $x^{\prime} \in(0,1)$ one has $p_{a_{k}\left(x^{\prime}\right) k}>0$ and there exists an $m \in \mathbb{N}$ such that $a_{j}\left(x^{\prime}\right)=a_{j}\left(x_{0}\right)$ for $j \geq m$.

Proof. The number x is an atom of distribution of the random variable ξ if

$$
\prod_{k=1}^{\infty} p_{a_{k}(x) k}>0
$$

Necessity. Let the random variable ξ have a discrete distribution and let x be an atom of distribution. Suppose that the infinite product (2.1) diverges to 0 . Then

$$
P\{\xi=x\}=\prod_{k=1}^{\infty} p_{a_{k}(x) k} \leq \prod_{k=1}^{\infty} \max _{m} p_{m k}=0
$$

but this contradicts the fact that x is an atom of distribution. Therefore, this contradiction proves the necessity.

Sufficiency. Let the statement (2.1) hold. Let x^{\prime} differ from x_{0} for a finite number of \widetilde{L}-symbols such that $p_{a_{k}\left(x^{\prime}\right) k}>0$. Then x_{0} and all such x^{\prime} are atoms of the distribution of ξ. Let us prove that the random variable ξ has a discrete distribution.

Let D_{m} be a set of all points x^{\prime} such that $a_{j}\left(x^{\prime}\right)=a_{j}\left(x_{0}\right)$ for $j \geq m$. Then

$$
\begin{aligned}
P\left\{\xi \in D_{m}\right\} & =\sum_{a_{1}\left(x^{\prime}\right)} \cdots \sum_{a_{m-1}\left(x^{\prime}\right)}\left(\prod_{k=1}^{m-1} p_{a_{k}\left(x^{\prime}\right) k} \cdot \prod_{k=m}^{\infty} p_{a_{k}\left(x_{0}\right) k}\right) \\
& =\prod_{k=1}^{m-1} \sum_{a_{k}\left(x^{\prime}\right)} p_{a_{k}\left(x^{\prime}\right) k} \cdot \prod_{k=m}^{\infty} p_{a_{k}\left(x_{0}\right) k}=\prod_{k=m}^{\infty} p_{a_{k}\left(x_{0}\right) k}
\end{aligned}
$$

The set $D=\bigcup_{m=1}^{\infty} D_{m}$ is at most countable because it is a countable union of at most countable sets. Since

$$
\left\{x_{0}\right\}=D_{1} \subset D_{2} \subset \cdots \subset D_{m} \subset D_{m+1} \subset \cdots,
$$

by the continuity of probability

$$
P\{\xi \in D\}=\lim _{m \rightarrow \infty} P\left\{\xi \in D_{m}\right\}=\lim _{m \rightarrow \infty} \prod_{k=m}^{\infty} p_{a_{k}}\left(x_{0}\right) k=1
$$

From the properties of the convergent infinite products it follows that the last limit is equal to 1 .

So the countable set D is the support of the distribution of the random variable ξ, that is, the distribution of ξ is discrete.

Corollary 2.3. The random variable ξ has a continuous distribution if and only if the infinite product (2.1) is equal to 0 .

Theorem 2.4. A continuous random variable ξ with independent \widetilde{L}-symbols has either a pure absolutely continuous or a pure singularly continuous distribution.

Proof. Let $\delta=\left(\delta_{1} \ldots \delta_{n}\right)$ be an ordered tuple of positive integers and let T_{δ}^{n} be a transformation of a point $x=\widetilde{L}\left(a_{1}, \ldots, a_{k}, \ldots\right)$ such that

$$
T_{\delta}^{n}(x) \equiv \widetilde{L}\left(\delta_{1} \ldots \delta_{n}, a_{1}, \ldots, a_{k}, \ldots\right)
$$

It is evident that the point $x_{0}=\Delta_{\left(\delta_{1} \ldots \delta_{n}\right)}^{\widetilde{L}}$ having a pure periodic \widetilde{L}-expansion with period $\left(\delta_{1} \ldots \delta_{n}\right)$ is an invariant point of T_{δ}^{n}-transformation.

The T_{δ}^{n}-transformation of the set E is the set of T_{δ}^{n}-images of all $x \in E$, i.e.,

$$
T_{\delta}^{n}(E)=\left\{u: u=T_{\delta}^{n}(x), \text { where } x \in E\right\}
$$

It is easy to see that

$$
T_{\delta}^{n}(0 ; 1)=\Delta_{\delta_{1} \ldots \delta_{n}}^{L}
$$

and T_{δ}^{n}-transformation is the similarity transformation with coefficient

$$
k=\prod_{i=1}^{n} \frac{1}{\delta_{i}\left(\delta_{i}+1\right)}
$$

It is evident that $\lambda\left[T_{\delta}^{n}(E)\right]=k \lambda(E)$, where λ is Lebesgue measure. Therefore $\lambda\left[T_{\delta}^{n}(E)\right]$ and $\lambda(E)$ are equal to zero simultaneously. Let

$$
T^{n}(E)=\bigcup_{\delta_{1}, \ldots, \delta_{n}} T_{\delta}^{n}(E), \quad T(E)=\bigcup_{n} T(E)
$$

We consider the event $A=\{\xi \in T(E)\}$. The event A is generated by the sequence of independent random variables η_{k} and does not depend on all σ-algebras B_{k} generated by $\eta_{1}, \ldots, \eta_{k}$. So, A is residual. Therefore, from the Kolmogorov's law of 0 and 1 [5] it follows that $P(A)=0$ or $P(A)=1$.

Only one of the two cases is possible:
(1) there exists a set E such that $\lambda(E)=0$ and $P\{\xi \in E\}>0$;
(2) for an arbitrary set E such that $\lambda(E)=0$ we have $P\{\xi \in E\}=0$.

In the first case the equality $\lambda(E)=0$ implies that $\lambda(T(E))=0$. Therefore, there is a set $T(E)$ such that $\lambda(T(E))=0$ and $P\{\xi \in T(E)\}=1$. So, ξ has a pure singularly continuous distribution by definition. In the second case the distribution is pure absolutely continuous by definition. So, the distribution of the random variable ξ is pure.

Theorem 2.5. The continuous distribution of the random variable ξ is pure absolutely continuous if and only if

$$
\begin{equation*}
\prod_{k=1}^{\infty}\left(\sum_{m=1}^{\infty} \sqrt{\frac{p_{m k}}{m(m+1)}}\right)>0 \tag{2.2}
\end{equation*}
$$

Proof. Let $\left\{\left(\Omega_{k}, B_{k}, \mu_{k}\right)\right\}$ and $\left\{\left(\Omega_{k}, B_{k}, v_{k}\right)\right\}$ be sequences of probability spaces such that

- $\Omega_{k}=\mathbb{N}, B_{k}$ is a σ-algebra of all subsets of Ω_{k},
- $\mu_{k}(m)=p_{m k}, v_{k}(m)=\frac{1}{m(m+1)}, k \in \mathbb{N}$,
where $p_{m k}$ is an element of the matrix $\left\|p_{i k}\right\|$ that determines the distribution of the random variable ξ.

It is evident that $\mu_{k} \ll v_{k}$ for all $k \in \mathbb{N}$. Let us consider the infinite products of probability spaces

$$
(\Omega, B, \mu)=\prod_{k=1}^{\infty}\left(\Omega_{k}, B_{k}, \mu_{k}\right), \quad(\Omega, B, v)=\prod_{k=1}^{\infty}\left(\Omega_{k}, B_{k}, v_{k}\right)
$$

By using Kakutani's theorem [1], we have $\mu \ll v$ if and only if

$$
\prod_{k=1}^{\infty} \rho\left(\mu_{k}, v_{k}\right)>0
$$

where

$$
\rho\left(\mu_{k}, v_{k}\right)=\int_{\Omega_{k}} \sqrt{\frac{d \mu_{k}}{d v_{k}}} d v_{k}
$$

is the Hellinger integral. In this case

$$
\prod_{k=1}^{\infty} \int_{\Omega_{k}} \sqrt{\frac{d \mu_{k}}{d v_{k}}} d v_{k}>0 \Longleftrightarrow \prod_{k=1}^{\infty}\left(\sum_{m=1}^{\infty} \sqrt{\frac{p_{m k}}{m(m+1)}}\right)>0
$$

Therefore, from the condition (2.2) it follows that the measure μ is absolutely continuous with respect to the measure v.

Let us consider the mapping $f: \Omega \rightarrow[0 ; 1]$ such that

$$
f(\omega)=\Delta_{\omega_{1} \ldots \omega_{k} \ldots}^{\widetilde{L}} \quad \text { for all } \omega=\left(\omega_{1}, \ldots, \omega_{k}, \ldots\right) \in \Omega
$$

For any Borel set E, we define the measures μ^{*} and ν^{*} as the image measures of μ and v under f :

$$
\mu^{*}(E)=\mu\left(f^{-1}(E)\right), \quad v^{*}(E)=v\left(f^{-1}(E)\right)
$$

The measure μ^{*} coincides with the probabilistic measure P_{ξ} and the measure ν^{*} coincides with the probabilistic measure P_{ψ}, which is equivalent to the Lebesgue measure λ. From the absolutely continuity of the measure μ with respect to the measure v it follows that the measure μ^{*} is absolutely continuous with respect to the measure v^{*}. Since $v^{*} \sim \lambda$, from condition (2.2) it follows that the random variable ξ is of pure absolutely continuous distribution.

Corollary 2.6. The continuous distribution of the random variable ξ is pure singularly continuous if and only if

$$
\prod_{k=1}^{\infty}\left(\sum_{m=1}^{\infty} \sqrt{\frac{p_{m k}}{m(m+1)}}\right)=0
$$

Lemma 2.7. At a point $x=\Delta_{a_{1} a_{2} \ldots a_{k} \ldots}^{\widetilde{L}}$, the probability distribution function F_{ξ} of the random variable ξ is of the following form:

$$
\begin{equation*}
F_{\xi}(x)=\beta_{a_{1}(x) 1}+\sum_{k=2}^{\infty}\left(\beta_{a_{k}(x) k} \prod_{j=1}^{k-1} p_{a_{j}(x) j}\right) \tag{2.3}
\end{equation*}
$$

where

$$
\beta_{a_{k}(x) k}= \begin{cases}\sum_{j=a_{k}(x)+1}^{\infty} p_{j k}, & \text { if } k=2 m-1 \\ \sum_{j=1}^{a_{k}(x)-1} p_{j k}, & \text { if } k=2 m, m \in \mathbb{N}\end{cases}
$$

Proof. By the definition of the probability distribution function of random variable, $F_{\xi}(x)=P\{\xi<x\}$.

Since for the point $x=\widetilde{L}\left(a_{1}(x), a_{2}(x), \ldots, a_{k}(x), \ldots\right)$ the event $\{\xi<x\}$ is a union of exclusive events

$$
\begin{aligned}
\{\xi<x\}=\{ & \left.\eta_{1}>a_{1}(x)\right\} \cup\left\{\eta_{1}=a_{1}(x), \eta_{2}<a_{2}(x)\right\} \\
& \cup \cdots \cup\left\{\eta_{1}=a_{1}(x), \ldots, \eta_{2 k-2}=a_{2 k-2}(x), \eta_{2 k-1}>a_{2 k-1}(x)\right\} \\
& \cup\left\{\eta_{1}=a_{1}(x), \ldots, \eta_{2 k-1}=a_{2 k-1}(x), \eta_{2 k}<a_{2 k}(x)\right\} \cup \cdots,
\end{aligned}
$$

we have

$$
\begin{aligned}
F_{\xi}(x)= & \sum_{j=a_{1}(x)+1}^{\infty} p_{j 1}+\sum_{j=1}^{a_{2}(x)-1} p_{j 2} \cdot p_{a_{1}(x) 1} \\
& +\cdots+\sum_{j=a_{2 k-1}(x)+1}^{\infty} p_{j, 2 k-1} \cdot \prod_{j=1}^{2 k-2} p_{a_{j}(x) j} \\
& +\sum_{j=1}^{a_{2 k}(x)-1} p_{j, 2 k} \cdot \prod_{j=1}^{2 k-1} p_{a_{j}(x) j}+\cdots \\
= & \beta_{a_{1}(x) 1}+\sum_{k=2}^{\infty}\left(\beta_{a_{k}(x) k} \prod_{j=1}^{k-1} p_{a_{j}(x) j}\right)
\end{aligned}
$$

Corollary 2.8. The change δ in the probability distribution function F_{ξ} on the cylinder $\Delta_{c_{1} c_{2} \ldots c_{m}}^{\widetilde{L}}$ is calculated by the formula

$$
\delta \equiv \delta\left(\Delta_{c_{1} c_{2} \ldots c_{m}}^{\widetilde{\widetilde{ }}}\right)=\prod_{i=1}^{m} p_{c_{i} i}
$$

Corollary 2.9. If $p_{c k}=0$, then the distribution function F_{ξ} is constant on each cylinder $\Delta_{c_{1} c_{2} \ldots c_{k-1} c}^{\widetilde{L}}$.

Lemma 2.10. If the probability distribution function F_{ξ} has a derivative (finite or infinite) at a point $x_{0}=\Delta_{a_{1} a_{2} \ldots a_{n} \ldots \text {, }}{ }^{\widetilde{L}}$, then

$$
F_{\xi}^{\prime}\left(x_{0}\right)=\prod_{i=1}^{\infty}\left(a_{i}\left(a_{i}+1\right) p a_{i} i\right) .
$$

Proof. In fact, if $F_{\xi}^{\prime}\left(x_{0}\right)$ exists, then

$$
\begin{aligned}
F_{\xi}^{\prime}\left(x_{0}\right) & =\lim _{\substack{x^{\prime}<x_{0}<x^{\prime \prime} \\
x^{\prime \prime}-x^{\prime} \rightarrow 0}} \frac{F_{\xi}\left(x^{\prime \prime}\right)-F_{\xi}\left(x^{\prime}\right)}{x^{\prime \prime}-x^{\prime}}=\lim _{n \rightarrow \infty} \frac{\delta\left(\Delta_{a_{1} \ldots a_{m}}^{\widetilde{L}}\right)}{\left|\Delta_{a_{1} \ldots a_{m}}^{L}\right|} \\
& =\lim _{m \rightarrow \infty} \prod_{i=1}^{m}\left(a_{i}\left(a_{i}+1\right) p_{a_{i} i}\right) .
\end{aligned}
$$

3 Topological and metric properties of a singular distribution of the random variable ξ

Let us recall [5] that there are three types of singular probability distributions according to topological and metric properties of their spectra. The singular probability distribution of the random variable is called:
(1) the distribution of Cantor type (or C-type) if its spectrum S_{ξ} is a set of zero Lebesgue measure,
(2) the distribution of Salem type (or S-type) if its spectrum S_{ξ} contains closed intervals,
(3) the distribution of quasi-Cantor type (or P-type) if its spectrum S_{ξ} is a nowhere dense set of positive Lebesgue measure.
By definition, the spectrum of the distribution of the random variable is a minimal closed support of the distribution. Also the spectrum is a set of growth points of the probability distribution function.

Lemma 3.1. The spectrum S_{ξ} of the distribution of the random variable ξ is the closure of the set

$$
B_{\xi}=\left\{x: x=\Delta_{\left.a_{1} a_{2} \ldots a_{n} \ldots, \text { where } p_{a_{n}(x) n}>0 \text { for all } n \in \mathbb{N}\right\}=C\left[\widetilde{L},\left(V_{n}\right)\right] . . ~}^{\text {. }}\right.
$$

Proof. Generally speaking, the set B_{ξ} is not closed. So, to prove the lemma it is enough to show that $B_{\xi} \subset S_{\xi}$ and any internal point of the set $[0,1] \backslash B_{\xi}$ does not belong to S_{ξ}.

Let x^{\prime} be a point such that $p_{a_{j}\left(x^{\prime}\right) j}>0$ for any $j \in \mathbb{N}$. Let us show that x^{\prime} belongs to the spectrum S_{ξ}.

By definition, the point x^{\prime} is a point of growth of the probability distribution function F_{ξ} if for any $\varepsilon>0$ the following inequality holds:

$$
F_{\xi}\left(x^{\prime}+\varepsilon\right)-F_{\xi}\left(x^{\prime}-\varepsilon\right)>0
$$

For any $\varepsilon>0$, there exists a cylinder $\Delta_{c_{1} c_{2} \ldots c_{m}}^{\widetilde{ }}$ such that

$$
\Delta_{c_{1} c_{2} \ldots c_{m}}^{\widetilde{L}} \subset\left(x^{\prime}-\varepsilon, x^{\prime}+\varepsilon\right)
$$

and $x^{\prime} \in \Delta_{c_{1} c_{2} \ldots c_{m}}^{\widetilde{L}}$. Then

$$
F_{\xi}\left(x^{\prime}+\varepsilon\right)-F_{\xi}\left(x^{\prime}-\varepsilon\right) \equiv \delta\left(\left(x^{\prime}-\varepsilon, x^{\prime}+\varepsilon\right)\right) \geq \delta\left(\Delta_{c_{1} c_{2} \ldots c_{m}}^{\widetilde{\widetilde{ }}}\right)=\prod_{i=1}^{m} p_{c_{i} i}>0
$$

If the point $x^{\prime} \in[0,1] \backslash B_{\xi}$ is not the endpoint of any cylinder and there exists $p_{a_{j}\left(x^{\prime}\right) j}=0$, then from Corollary 2.9 of Lemma 2.7 it follows that x^{\prime} belongs to the interval $\nabla_{c_{1} c_{2} \ldots c_{m}} \equiv \operatorname{int} \Delta_{c_{1} c_{2} \ldots c_{m}}$. For $\varepsilon>0$ such that

$$
\left(x^{\prime}-\varepsilon, x^{\prime}+\varepsilon\right) \subset \nabla_{c_{1} c_{2} \ldots c_{m}}
$$

we have

$$
F_{\xi}\left(x^{\prime}+\varepsilon\right)-F_{\xi}\left(x^{\prime}-\varepsilon\right) \leq \delta\left(\Delta_{c_{1} c_{2} \ldots c_{m}}^{L}\right)=0
$$

Thus $x^{\prime} \notin S_{\xi}$.
Theorem 3.2. The spectrum S_{ξ} of the distribution of the random variable ξ is:
(1) the closed interval $[0,1]$ if the matrix $\left\|p_{i k}\right\|$ does not contain zeros,
(2) the union of closed intervals if the matrix $\left\|p_{i k}\right\|$ has zeros only in a finite number of columns,
(3) a nowhere dense set, and the Lebesgue measure is calculated by the formula

$$
\begin{equation*}
\lambda\left(S_{\xi}\right)=\prod_{k=1}^{\infty} W_{k}, \quad \text { where } W_{k}=\sum_{i: p_{i k}>0} \frac{1}{i(i+1)}, \quad k \in \mathbb{N} \tag{3.1}
\end{equation*}
$$

if the matrix $\left\|p_{i k}\right\|$ contains zeros in an infinite number of columns.
Proof. Statement (1) is obvious.
(2) Let $p_{i k}>0$ for $i \in \mathbb{N}, k \geq m$. Since
for any tuple of positive integers $\left(i_{m+1}, \ldots, i_{m+n}\right), n \in \mathbb{N}$, we have that F_{ξ} is
strictly increasing on each cylinder $\Delta_{c_{1} \ldots c_{m}}^{\widetilde{L}}$ such that $p_{c_{k} k}>0, k=1, \ldots, m-1$. That is, S_{ξ} is the closure of the set

$$
\bigcup_{c_{i}: p_{c_{i} i}>0} \Delta_{c_{1} \ldots c_{m}}^{\widetilde{L}}
$$

(3) From the definition of the spectrum S_{ξ} and Lemma 2.7 it follows that for any $k \in \mathbb{N}$,

$$
S_{\xi} \cap \Delta_{a_{1} \ldots a_{k}}^{\widetilde{L}} \begin{cases}=\varnothing & \text { if there exists an } m \leq k \text { such that } p_{a_{m} m}=0 \\ \neq \varnothing & \text { if } \prod_{j=1}^{k} p_{a_{j} j}>0 .\end{cases}
$$

Then

$$
\begin{aligned}
\lambda\left(S_{\xi}\right) & =1-\left(\sum_{a_{1}: p_{a_{1} 1=0}}\left|\Delta_{a_{1}}^{\widetilde{L}}\right|+\sum_{\substack{a_{1}: p_{a_{1} 1}>0 \\
a_{2}: p_{a_{2} 2}=0}}\left|\Delta_{a_{1} a_{2}}^{\widetilde{L}}\right|\right. \\
& \left.+\sum_{\substack{a_{1}, a_{2}: p_{a_{1} 1} p_{p_{2} 2}>0 \\
a_{3}: p_{a_{3} 3}=0}}\left|\Delta_{a_{1} \ldots a_{k}}^{\widetilde{L}}\right|+\cdots\right) \\
& =1-M_{1}-W_{1} M_{2}-W_{1} W_{2} M_{3}-\cdots \\
& =W_{1}-W_{1} M_{2}-W_{1} W_{2} M_{3}-\cdots \\
= & W_{1} W_{2}-W_{1} W_{2} M_{3}-\cdots=\prod_{k=1}^{\infty} W_{k}
\end{aligned}
$$

where $M_{k}=\sum_{i: p_{i k}=0} \frac{1}{i(i+1)}=1-W_{k}, k \in \mathbb{N}$.
Corollary 3.3. Spectrum of the distribution of the random variable ξ is the set of zero Lebesgue measure if and only if

$$
\sum_{k=1}^{\infty} M_{k}=\infty
$$

This corollary follows from the theorem on the relation between infinite products and infinite series.

Theorem 3.4. The singular distribution of the random variable ξ is a singular distribution:
(1) of C-type if and only if the infinite product (3.1) diverges,
(2) of S-type if and only if the matrix $\left\|p_{i k}\right\|$ has a finite number of columns containing zeros,
(3) P-type if and only if the infinite product (3.1) converges and the matrix $\left\|p_{i k}\right\|$ has an infinite number of columns containing zeros.

Proof. Theorem 3.4 is a consequence of Theorem 3.2. In fact, if the matrix $\left\|p_{i k}\right\|$ has only a finite number of columns containing zeros, then the spectrum of the distribution of ξ is the union of closed intervals and the distribution is of S-type. If the matrix $\left\|p_{i k}\right\|$ has an infinite number of such columns, then the spectrum is a nowhere dense set. Moreover, the spectrum is a set of zero Lebesgue measure if the infinite product in (3.1) diverges to zero. So, ξ has the distribution of C-type. The spectrum is a set of positive Lebesgue measure if the infinite product in (3.1) converges. So, ξ has the distribution of P-type. Since these conditions are incompatible, this proves the theorem.

$4 \underset{\sim}{\text { Distributions of }}$ random variables with identically distributed \widetilde{L}-symbols

Let $\xi_{0}=\Delta_{\eta_{1} \eta_{2} \ldots \eta_{k} \ldots}^{\widetilde{L}}$ be a random variable such that the \widetilde{L}-symbols η_{k} are independent and identically distributed, i.e., $P\left\{\eta_{k}=i\right\}=p_{i k}=p_{i}$. Then in the formula of the probability distribution function we have

$$
\beta_{a_{k}(x) k} \equiv \beta_{a_{k}(x)}= \begin{cases}\sum_{j=a_{k}(x)+1}^{\infty} p_{j}, & \text { if } k=2 m-1 \\ \sum_{j=1}^{a_{k}(x)-1} p_{j}, & \text { if } k=2 m, m \in \mathbb{N}\end{cases}
$$

From Theorems 2.1 and 2.2 follows that the distribution of the random variable ξ_{0} is a degenerate distribution (discrete distribution with a single atom) if $\max _{i} p_{i}=1$ or a uniform distribution if $p_{i}=\frac{1}{i(i+1)}$ for all $i \in \mathbb{N}$ or a singular continuous distribution in other cases.

Thus singularity dominates in the studied class of distributions of random variables.

Lemma 4.1. The graph Γ of the probability distribution function is an \mathbb{N}-selfaffine set of the space \mathbb{R}^{2} and

$$
\begin{equation*}
\Gamma=\bigcup_{i=1}^{\infty} \varphi_{i}(\Gamma) \tag{4.1}
\end{equation*}
$$

where

$$
\varphi_{i}:\left\{\begin{array}{l}
x^{\prime}=\frac{1-x}{i(i+1)}+\frac{1}{i+1}, \tag{4.2}\\
y^{\prime}=p_{i}(1-y)+\beta_{i},
\end{array} \quad \varphi_{i}(\Gamma) \cap \varphi_{i+1}(\Gamma)=C_{i}\left(\frac{1}{i+1} ; \beta_{i}\right)\right.
$$

Proof. To prove equality (4.1) we firstly show that

$$
\varphi_{1}(\Gamma) \cup \varphi_{2}(\Gamma) \cup \cdots \cup \varphi_{n}(\Gamma) \cup \cdots \equiv G \subset \Gamma
$$

To this end we consider any point M of the graph Γ

$$
M\left(x ; F_{\xi_{0}}(x)\right) \xrightarrow{\varphi_{i}} M_{i}\left(\frac{1-x}{i(i+1)}+\frac{1}{i+1} ; \beta_{i}+p_{i}\left(1-F_{\xi_{0}}(x)\right)\right)=\varphi_{i}(M) \in \Gamma .
$$

Now we show that $\Gamma \subset G$. Let $M\left(x ; F_{\xi_{0}}(x)\right) \in \Gamma$. We consider the number $x_{1}=\Delta_{a_{2}(x) a_{3}(x) \ldots \text {. }}^{\widetilde{L}}$. ince $d_{1}(x) \in \mathbb{N}$, we have

$$
F_{\xi_{0}}(x)=\beta_{i}+p_{i}\left(1-F_{\xi_{0}}(x)\right)
$$

From $\bar{M}\left(x_{1} ; F_{\xi_{0}}(x)\right) \in \Gamma$ it follows that

$$
\varphi_{i}(\bar{M})=M\left(x ; F_{\xi_{0}}(x)\right) \in G
$$

Equality (4.1) is proved.
Since

$$
O(0 ; 0) \xrightarrow{\varphi_{i}} C_{i-1}\left(\frac{1}{i} ; \beta_{i-1}\right), \quad C(1 ; 1) \xrightarrow{\varphi_{i}} C_{i}\left(\frac{1}{i+1} ; \beta_{i}\right), \quad i \in \mathbb{N},
$$

we have equality (4.2).
Theorem 4.2. The definite Lebesgue integral of the probability distribution function $F_{\xi_{0}}$ on the closed interval $[0,1]$ is calculated by the formula

$$
\begin{equation*}
\int_{0}^{1} F_{\xi_{0}}(x) d x=\frac{\sum_{i=1}^{\infty} \frac{\beta_{i-1}}{i(i+1)}}{1+\sum_{i=1}^{\infty} \frac{p_{i}}{i(i+1)}} . \tag{4.3}
\end{equation*}
$$

Proof. Since the Lebesgue integral has the additive property, we have

$$
\begin{aligned}
I & \equiv \int_{0}^{1} F_{\xi_{0}}(x) d x \\
& =\sum_{i=1}^{\infty} \int_{\frac{1}{i+1}}^{\frac{1}{i}}\left[\beta_{i}+p_{i}\left(1-F_{\xi_{0}}\left(\Delta_{d_{2} d_{3} \ldots d_{n} \ldots}^{\widetilde{L}}\right)\right)\right] d x \\
& =\sum_{i=1}^{\infty} \frac{\beta_{i}}{i(i+1)}+\left(\sum_{i=1}^{\infty} \frac{p_{i}}{i(i+1)}\right) \cdot\left(1-\int_{0}^{1} F_{\xi_{0}}(x) d x\right) \\
& =\sum_{i=1}^{\infty} \frac{\beta_{i}}{i(i+1)}+\sum_{i=1}^{\infty} \frac{p_{i}}{i(i+1)}-\left(\sum_{i=1}^{\infty} \frac{p_{i}}{i(i+1)}\right) \cdot \int_{0}^{1} F_{\xi_{0}}(x) d x
\end{aligned}
$$

Then

$$
\left(1+\sum_{i=1}^{\infty} \frac{p_{i}}{i(i+1)}\right) \cdot I=\sum_{i=1}^{\infty} \frac{\beta_{i-1}}{i(i+1)}
$$

So, we have (4.3).
Theorem 4.3. The probability distribution function of the random variable ξ_{0} with independent identically distributed \widetilde{L}-symbols preserves the Hausdorff-Besicovitch dimension if and only if $p_{i}=\frac{1}{i(i+1)}$ for any $i \in \mathbb{N}$.

Proof. Necessity. If $p_{i}=\frac{1}{i(i+1)}$ for all $i \in \mathbb{N}$, then $F_{\xi}(x)=x$. The function $F_{\xi}(x)$ is an identical transformation on $(0,1]$. Then the probability distribution function preserves the Hausdorff-Besicovitch dimension.

Sufficiency. Suppose that the probability distribution function preserves the Hausdorff-Besicovitch dimension and there exists a $j \in \mathbb{N}$ such that

$$
p_{j} \neq \frac{1}{j(j+1)} .
$$

Without loss of generality we assume that

$$
\begin{equation*}
p_{j}<\frac{1}{j(j+1)} \tag{4.4}
\end{equation*}
$$

Then there exists $p_{m}>\frac{1}{m(m+1)}$.
In fact, if $p_{i} \leq \frac{1}{i(i+1)}$ for $i \neq j$, then

$$
1-p_{j}=\sum_{i \neq j \in \mathbb{N}} p_{i} \leq \sum_{i \neq j \in \mathbb{N}} \frac{1}{i(i+1)}=1-\frac{1}{j(j+1)}
$$

This contradicts inequality (4.4).
Let us consider p_{c} where $j \neq c \neq m$. Then

$$
p_{c} \leq \frac{1}{c(c+1)} \quad \text { or } \quad p_{c} \geq \frac{1}{c(c+1)}
$$

We choose two numbers among the numbers p_{j}, p_{m}, p_{c} such that the inequalities of the same sign hold. Let p_{l} and p_{k} be such numbers.

Let us consider the set $C[\widetilde{L}, V]$ containing only numbers whose \widetilde{L}-symbols belongs to the set $V=\{l, k\}$. It is a self-similar fractal. The Hausdorff-Besicovitch dimension of $C[\widetilde{L}, V]$ coincides with the self-similar dimension and is a solution of the equation

$$
\left(\frac{1}{l(l+1)}\right)^{x}+\left(\frac{1}{k(k+1)}\right)^{x}=1
$$

The image of this set under the transformation F_{ξ} is also self-similar fractal such that the Hausdorff-Besicovitch dimension is a solution of the equation

$$
p_{l}^{x}+p_{k}^{x}=1
$$

But it is obvious that these numbers do not coincide.

Bibliography

[1] S. Kakutani, On equivalence of infinite product measures, Ann. of Math. (2) 49 (1948), 214-224.
[2] S. Kalpazidou, A. Knopfmacher and J. Knopfmacher, Lüroth-type alternating series representations for real numbers, Acta Arith. 55 (1990), no. 4, 311-322.
[3] S. Kalpazidou, A. Knopfmacher and J. Knopfmacher, Metric properties of alternating Lüroth series, Port. Math. 48 (1991), no. 3, 319-325.
[4] J. Lüroth, Ueber eine eindeutige Entwickelung von Zahlen in eine unendliche Reihe, Math. Ann. 21 (1883), no. 3, 411-423.
[5] M. V. Pratsiovytyi, Fractal Approach to Investigations of Singular Probability Distributions (in Ukrainian), Dragomanov National Pedagogical University, Kyiv, 1998.
[6] M. V. Pratsiovytyi and Y. V. Khvorostina, The set of incomplete sums of the alternating Lüroth series and probability distributions on it (in Ukrainian), Trans. Dragomanov Natl. Pedagog. Univ. Ser. 1. Phys. Math. 10 (2009), 14-28.
[7] M. V. Pratsiovytyi and Y. V. Khvorostina, Metric theory of alternating Lüroth series representations for real numbers and applications (in Ukrainian), Trans. Dragomanov Natl. Pedagog. Univ. Ser. 1. Phys. Math. 11 (2010), 102-118.

Received August 8, 2012; accepted October 16, 2013.

Author information

Mykola Pratsiovytyi, Pirogova Str. 9, 01030 Kyiv, Ukraine.
E-mail: prats4@yandex.ru
Yuriy Khvorostina, Pirogova Str. 9, 01030 Kyiv, Ukraine.
E-mail: khvorostina13@mail.ru

