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CURRENT PROBLEMS AND FUTURE PERSPECTIVES OF MATHEMATICS EDUCATION

Abstract. From the origin of mathematics as an autonomous science two extreme philosophies about its orientation have
been tacitly emerged: Formalism, where emphasis is given to the axiomatic foundation of the mathematical content and
intuitionism, which focuses on the connection of the mathematical existence of an entity with the possibility of constructing it,
thus turning the attention to problem-solving processes. Although none of the existing schools of mathematical thought,
including formalism and intuitionism, have finally succeeded to find a solid framework for mathematics, most of the recent
advances of this science were obtained through their disputes about the absolute mathematical truth. In particular, during the
19th and the beginning of the 20th century, the paradoxes of the set theory was the reason of an intense “war” between formalism
and intuitionism, which however was extended much deeper into the mathematical thought. All these disputes created serious
problems yo the sensitive area of mathematics education, the most characteristic being probably the failure of the introduction
of the “New Mathematics” to the school curricula that distressed students and teachers for many years. In the present work
current problems of mathematics education are investigated, such as the role of computers in the process of teaching and learning
mathematics, the negligence of the Euclidean Geometry in the school curricula, the excessive emphasis given sometimes by the
teachers to mathematical modeling and applications with respect to the acquisition of the mathematical content by students, etc.
The future perspectives of teaching and learning mathematics at school and out of it are also discussed. The article is formulated
as follows: A short introduction is attempted in the first Section to the philosophy of mathematics .The main ideas of formalism
and intuitionism and their effects on the development of mathematics education are exposed in the next two Sections. The fourth
Section deals with the main issues that currently occupy the interest of those working in the area of mathematics education and
the article closes with the general conclusions stated in the fifth Section that mainly concern the future perspectives of
mathematics education.

Keywords: Philosophy of Mathematics, Platonism, Paradoxes of Set Theory, Formalism, Intuitionism, Mathematics
education, Problem-Solving, Mathematical Modeling, Computers in the Teaching and Learning of Mathematics.

Problem Formulation. The scientific beliefs about the nature of mathematics were focused for centuries on the ideas of
Plato (Picture 1) about the existence of an abstract, eternal and unchanged universe of mathematical forms. Consequently it was
strongly believed that mathematics is not invented, but it is gradually discovered by humans (Platonism). In a more general
context, all those who believe that mathematics exists independently from the human mind belong to the school of mathematical
realism and they are divided into several categories with respect to their beliefs about the texture of the mathematical entities
and the way in which we learn it ([24], Section 2).

Picture 1. Plato (424-377 BC)
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However, the radical advances on Mathematics during the last two centuries, such as the appearance of the non Euclidean
Geometries, the axiomatic foundation of the Set Theory that enables one to consider four different forms of it (see next Section),
the proof of the Godel’s Incompleteness Theorems, the eventual enrolment of informatics in the pure mathematical research,
etc., as well as data collected from experimental researches of cognitive scientists and psychologists on human mathematical
activities, have currently turned to a great percentage the scientific views to the belief that mathematics is actually an invention
of the human mind ([24], Sections 3 and 4). The embodied mind theories, for example, hold that mathematical thought is a
natural outgrowth of the human cognitive apparatus, which finds itself in our physical universe; e.g. the abstract concept of
number springs from the experience of counting discrete objects. Thus humans construct and do not discover, mathematics.
There also exist intermediate theories stating that mathematics is a mixture of human inventions (axioms, definitions) and of
discoveries (theorems) [8].

In such a dynamic environment of contravening ideas about the nature of mathematics the philosophy of mathematics
was rapidly developed and the known schools of mathematical thought were gradually established in their typical forms. It is
recalled that the philosophy of mathematics is the branch of philosophy that studies the assumptions, foundations, and
implications of mathematics, and aims to provide a viewpoint of the nature and methodology of mathematics, and to understand
the place of mathematics in people's lives [25].

The target of the present work is to investigate the influence (positive and negative) of the schools of mathematical thought
on the development of mathematics education and to discuss current problems occupying the interest of those working in the area.

Formalism, intuitionism and the other schools of mathematical thought. Two extreme philosophies about the
orientation of mathematics have been tacitly emerged almost from its origin as an autonomous science: Formalism, where
empbhasis is given to the axiomatic foundation of mathematics and intuitionism, which focuses on the connection of the existence
of a mathematical entity with the possibility of constructing it, thus turning the attention to problem-solving processes.

The axiomatic foundation of Geometry in Euclid’s “Elements”, the most famous in the world mathematical classic, is a
characteristic example of the formalistic point of view. An analogous example for intuitionism is the less known to the West world
Oriental counterpart “Jiu Zhang Suan Shu” (Nine Chapters on Mathematics) [9]. Although very different in form and structure
from Euclid’s “Elements’, it has served as the foundation of traditional Oriental mathematics and it has been used as a
mathematics text book for centuries in China and in most other countries of Eastern Asia. Its title has been translated to English
in various ways. Although “mathematics” seems to be a more accurate translation of “Suan Shu” than mathematical art, it seems
that mathematics in the East was indeed more of an art as compared to mathematics in the West as a science.

Very many centuries later, during the 19th and the beginning of the 20th century, the paradoxes of the set theory was
the reason of an intense dispute among the followers of the two philosophies, which however was extended much deeper into
the mathematical thought. Set theory has been proved to be fundamental for the development of the whole specter of
mathematics resulting to the foundation of its several branches on a more solid basis and to their enrichment with new ideas and
directions. It is recalled that the founder of the set theory Cantor (Picture 2) defined the concept of a set as a finite or infinite
collection of objects (elements) of any nature, different to each other, sharing a common characteristic property, so that they
can be considered as a totality. It becomes therefore evident that a set cannot simultaneously be one of its elements. However,
our unlimited capability of creating any kind of new sets can easily lead to paradoxes. For example, the set of all the sets is
obviously an element of its self! Also, if T is the set of all sets that they do not contain themselves as an element, then obviously
T €Timpliesthat T € Tand T € T implies that T T (Russel’s paradox)! The catalogue of the paradoxes is not completed here

(e.g. see [1], Section XVII), but such an attempt is out of the scope of this article.

Picture 2. Georg Cantor (1845-1918)

The important thing for our purpose is that the paradoxes of the set theory gave the impulsion to the German
mathematician Ernst Zermelo (1871-1953), following the road opened by Euclid for Geometry many centuries ago, to introduce
in 1908 a way of restating the Set Theory in terms of a system of axioms. As a result, the paradoxes were by-passed through a
careful statement of those axioms so that to blockade contradictory notions like the set of all the sets, etc. The axiomatic system
of Zermelo was enriched by Fraenkel (1922) and was further improved by Von Neumann (1925), so that everything seemed to
work well. But gradually, one of the axioms started to cause headache to the mathematicians. This was the axiom of choice,
according to which, if X is a set of non empty sets, then one can choose a unique element from each of these sets in order to
create a new set Y. When X is either a finite set, or it is an infinite set but we know the rule under which the choice is made, then
the above statement works well. The problem is located when X is an infinite set and the rule of the choice is unknown. In this
case the choice does never end and the existence of Y becomes a matter of faith rather than a reality. For example, assuming
that X is an infinite set of pairs of shoes, if we decide to choose always the right shoe from each pair, then there is no problem.
On the contrary, if X is an infinite set of pairs of stockings, then obviously we have problem with the choice.

This problem made the mathematicians to start thinking, as it had happened centuries ago with the fifth Euclid’s axiom,
if the axiom of choice could be either proved or by-passed with the help of the other axioms. The answer to this question was
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partially given by Gédel (Picture 3), who proved that the axiom of choice as well as the Cantor’s continuum hypothesis are
consistent to the rest of the Zermelo-Fraenkel axioms; i.e. they cannot be contradicted by them [5]. Moreover, for the continuum
hypothesis this remains true even if the axiom of choice is added to the other Zermelo-Fraenkel axioms. It is recalled that the
continuum hypothesis, which was the first of the 23 unsolved mathematical problems presented in 1900 by Hilbert at the
International Conference of Mathematics in Paris, states that the set of real numbers has the minimal cardinality which is greater
than the cardinality of the set of non negative integers. Moreover, the generalized continuum hypothesis states that the
cardinality of the power set of each infinite set is the smaller cardinality which is greater than the cardinality of this set.

The Godel’s result was completed by the American mathematician Paul Cohen, who proved in 1963 that the axiom of
choice and the continuum hypothesis cannot be proved by the other axioms of set theory and that this is true for the continuum
hypothesis even if the axiom of choice is added to those axioms. The combination of the Cohen’s and the Godel’s results show
that the axiom of choice and the continuum hypothesis are independent from the other axioms of set theory. Therefore,
considering the continuum hypothesis as an axiom and adding it to the system of the Zermelo-Fraenkel axioms, one can create
four different theories for the sets: The first one by including to it both the axioms of the choice and of the continuum, the next
two by including only one of them in each case and the fourth one by including none of them! Therefore, the open “war” between
formalism and intuitionism had already been started without any mercy!

Picture 3. Curt Godel (1906 — 1978)

Formalism on the one hand claims that the mathematical statements may be thought of as statements about the
consequences of certain string manipulation rules. For example, Euclidean geometry is seen as consisting of some strings called
"axioms", and some "rules of inference" to generate new strings (theorems) from the given ones. Apart from the axiomatic
foundation of mathematics, the main beliefs of formalism include the need of consistency of the axioms and the notions not
permitting the creation of absurd situations, the Aristotle’s law of the excluded middle (something is either true or false) and the
possibility of the existence of a solution (positive or negative) for each mathematical problem, even if such a solution has not

been found yet. For example, let A be the set of all sets. Then A = A, but also AT A, since A belongs to A and therefore A is a
proper subset of A. But this is absurd, which means that the notion of the set of all the sets is not consistent and therefore it does
not exist

The main critique against formalism is that the genuine ideas and inspirations that occupy mathematicians are far
removed from the manipulation games with the stings of axioms mentioned above. Formalism is thus silent on the question of
which axiom systems ought to be studied, as none of them is more meaningful than another from the formalistic point of view.

The program of the leader of formalism David Hilbert (Picture 4) aimed to a complete and consistent axiomatic
development of all branches of mathematic. However, the Gédel’s incompleteness theorems put a definite end to his ambitious
plans. In fact, there is no system that can prove the consistency of another system, since it has to prove first its own consistency,
which, according to the second of the above theorems is impossible! Therefore, the best to hope is that the statement of a certain
system’s axioms, although by the first Godel’s theorem it cannot be complete, it is consistent.

Picture 4. D. Hilbert (1862-1943)

On the other end, the main beliefs of intuitionism include the primitive understanding of the natural numbers (for the
formalists proofs are needed for the consistency of the arithmetic operations among them) and the connection of the
mathematical existence of an entity with the possibility of constructing it. For example, Zermelo proved that each non empty set
can be well ordered, i.e. it can be ordered in such a way that each subset of it has a minimal element. However, for the intuitionists
this theorem has not any value, since it does not suggest the way in which such an order could be constructed. In addition,
intuitionists do not accept neither the law of the excluded middle, nor the possibility of the existence of a solution for each
problem, although problems without a positive or negative solution have not been appeared in the history of mathematics until
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now. Further, the formalistic view that a notion’s consistency guarantees its existence is completely unacceptable for the
intuitionists. L. Kronecker (1823- 1891), the main pioneers of intuitionism, used to say that “God created the natural numbers,
whereas all the other mathematical entities have been created by the humans”. The leader of intuitionism was L. E. J. Brouwer
(Picture 5), but H. Weyl (1885-1965) and several others have played also an important role in supporting its ideas.

Picture 5. L. E. J. Brouwer (1881-1965)

In intuitionism, the term "construction" is not cleanly defined, and that has led to criticisms. Attempts have been made
to use the concepts of Turing machine or computable function to fill this gap, leading to the claim that only questions regarding
the behaviour of finite algorithms are meaningful and should be investigated in mathematics. This has led to the study of the
computable numbers, first introduced by Alan Turing [16] that are associated with the theoretical computer science.

The study of the history of mathematics reveals that there exists a continuous oscillation between formalism and
intuitionism [3]. This oscillation is symbolically sketched in Figure 1, where the two straight lines represent the two philosophies,
while the continuous broadening of space between the lines corresponds to the continuous increase of mathematical knowledge.
According to Verstappen [17] the period of this oscillation is of about 50 years, which has been also crossed by Galbraith [4] by
studying a diagram, due to Shirley, representing a parallel process between the alterations of the economical conditions and the
changes appearing to the mathematical education systems of the developed west countries.

Examples of how the “mathematics pendulum” swung from the one extreme to the other over the span of about a
century, include the evolution from the purely axiomatic mathematics of the School of Bourbaki to the reawaking of
experimental mathematics, from the complete banishment of the “eye” in the theoretical hard sciences to the computer graphics
as an integral part of the process of thinking, research and discovery and also the paradoxical evolution from the invention of
“pathological monsters”, such as Peano’s curve or Cantor’s set — which Poincare said that should be cast away to a mathematical
zoo never to be visited again — to the birth of Mandelbrot’s Fractal Geometry of Nature [10]. To Mandelbrot’s surprise and to
everyone else’s, it turns out that these strange objects, coined fractals, are not mathematical anomalies but rather the very
patterns of nature’s chaos!

Figure 1. The oscillation between formalism and intuitionism

Apart from the above two extreme philosophies and the ideas of mathematical realism and of the embodied mind
theories mentioned in the previous Section, several other schools of mathematical thought have been emerged in the history of
mathematics, each one having its own strengths and weaknesses. Logicism, for example, developed in the beginning of the 20th
century, believes that mathematics is reducible to logic, and hence it is nothing but a part of logic ([15], Chapter 5). Also
structuralism is a more recent position holding that mathematical theories describe structures, and that mathematical objects
are exhaustively defined by their places in such structures; e.g. the real numbers are completely defined by their places in the
real line ([15], Chapter 10). The catalogue of the schools of mathematical thought does not end here (e.g. see [15, 25]), but a
complete reference to all of them is out of the scope of the present work, which will focus on discussing current problems of
mathematics education.

The influence of the schools of mathematical thought on Mathematics Education. The traditional components of school
mathematics, i.e. Arithmetic, Euclidean Geometry, Trigonometry and Elementary Algebra, had remained stable for many years,
almost from the time of Napoleon the Great! However, as a consequence of the “mathematics pendulum” swing, dramatic
changes also happened in the area of mathematics education during the last 50-60 years. First, the result of the post — war effort
to bring mathematics as a teaching subject into harmony with mathematics as a science, as it has been developed since the last
quarter of the 19th century, with an increasing gap between school mathematics and modern higher level mathematics, was the
introduction, during the 60’s, of the “New Mathematics” in the curricula of studies. New chapters were added in the curricula,
like Set Theory, elements from Linear and Abstract Algebra (matrices, determinants, algebraic structures, etc.) and Mathematical
Logic, Probability and Statistics and of course Mathematical Analysis up to the study of integrals in one variable and even of
simple forms of Differential Equations.
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The way of presentation of the material was also changed, since the traditional inductive methods involving many
examples and applications gave their place to a strict, axiomatic presentation that created many difficulties not only to the
students, but also to the teachers, who were not adequately prepared to teach the new topics introduced in the curricula.
Moreover, the volume of the material to be taught was enormously increased, since some space should be also remained for the
old, traditional school mathematics.

Therefore, it did not take many years to realize that the new curricula did not function satisfactorily all the way through,
from primary school to university, even if the problems varied with the level [6]. Thus, and after the rather vague “wave” of the
“back to the basics”, considerable emphasis has been placed during the 80’s on the use of the problem as a tool and motive to
teach and understand better mathematics [19], with two main components: Problem — Solving, where emphasis was given to
the use of heuristics (solving strategies) for the solution of mathematical problems [13, 14] and Mathematical Modelling and
Applications, dealing with the formulation and solution of a special type of mathematical problems generated by corresponding
problems of the real world and the everyday life [12, 22]. The attention was turned also to Problem - Posing, i.e. to the process
of extending existing or creating new problems [2].

The excessive emphasis given during the 80’s on the use of the heuristics for problem-solving received several critiques
[7, 11] suggesting that the attention should be turned rather to the presentation of well prepared examples (solved problems)
ant to the automation of rules. The argument was that these approaches facilitate better the transfer of knowledge (i.e. its
transformation to new knowledge) and the acquisition by the students of the proper schemas (cognitive mental structures), than
the analytic methods of the problem-solving strategies that impose a heavy cognitive weight on them. On the contrary,
mathematical modelling has been evolved nowadays to a teaching method of mathematics, usually referred as application-
oriented teaching of mathematics [18].

A current approach of mathematics education is the utilization of informatics as a tool for the teaching and learning of
mathematics. In fact, the animation of figures and of mathematical representations, obtained by using suitable mathematical
software, increases the students’ imagination and helps them to find easier the solutions of the corresponding problems. The
role of mathematical theory after this is not to convince, but to explain. Moreover, by thinking like a computer scientist, students
become aware of behaviours and reactions that can be captured in algorithms or can be analysed within an algorithmic
framework. Computational thinking, the modern expression of algorithmic thinking [26], gives nowadays to students a different
framework for visualizing and analyzing, a whole new perspective of solving strategies. Figure 2, taken from [20], represents how
the two basic modes of thinking, i.e. computational and critical thinking, are combined with the existing mathematical knowledge
to solve a complicated problem. This representation is based on the approach that, when the already existing knowledge is
adequate, the necessary for the problem’s solution new knowledge is obtained through critical thinking, while computational
thinking is applied to design and to execute the problem’s solution.

Critical Thinking

Problem (obstacle)
~~

—_—

Application Problem solved (product)

Knowledge Computational Thinking

Figure 2. Computational thinking in Problem-Solving

In concluding, critical thinking is a prerequisite to knowledge acquisition and to its application to solve problems, but not
a sufficient condition when one faces complex problems of the real life (e.g. technological problems), which require also a
pragmatic way of thinking for their solution, such as the computational thinking is.

Current problems in the area of Mathematics Education. In the name of the introduction of modern mathematical topics
in the school curricula, like Mathematical Analysis, Analytic Geometry, Probability Theory, etc., the teaching of the traditional
Euclidean Geometry has drastically restricted and/or neglected. For example, nowadays we have reached to the point that in the
Greek Upper High School (Lyceum) the 3-dimensional Euclidean Geometry is usually not taught at all! According to the opinion
of the majority of educators and researchers in the area of mathematics education, including the present author, this is a big
pedagogical mistake. In fact, although the traditional Geometry is nowadays out of the focus of the modern mathematical
research, it remains an indispensable pedagogical tool for enhancing the student mathematical thinking and fantasy, since its
objects are real, solid and within the student cognitive experiences. That is why many tertiary teachers of mathematics, taking
into account the weaknesses of their students in understanding the properties of space, they suggest that it would be much
better for them to be taught the geometry of space in the Upper High School, instead of learning the abstract properties of the
integrals and other details of Mathematical Analysis, that could be taught more effectively at the university level.

Another problem may be created by the mistaken view of a number of experts and educators that mathematical
modeling could become a general, i.e. applicable in all cases, method for teaching mathematics. In fact, mathematical modeling
has many advantages, because it connects mathematics to real world situations, thus revealing its usefulness to students and
therefore increasing their interest for it. However, the attempt to teach everything through mathematical modeling hides the
danger to neglect the mathematical content in favor of the applications. A few years ago, | presented in the ICTMA Newsletter
[21] two mathematical modeling problems on the use of the derivative for calculating the extreme values of a function in one
variable. The one of them was about the construction of a channel to run the maximum possible quantity of water through it by
folding the two edges of a metallic leaf so that to remain perpendicular to the surface of the rest of the leaf. An anonymous
critique was published together with it, suggesting that it could be much more interesting, if | had left the choice of the angle of
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the edges of the leaf to my students. My answer [23] was that, if | had done so, it could be a good exercise on problem-posing,
but my students, being busy by playing with the construction of the channel, would probably not learn anything more about the
derivatives!

A third and last comment that is of worth to be added here is about the use of the computers as a tool in the process of
teaching and learning mathematics. Students today, using the convenient small calculators, can make quickly and accurately all
kinds of numerical operations. Further, the existence of a variety of suitable mathematical software gives them the possibility to
find automatically the solutions of all the standard forms of equations and of systems of equations, to make any kind of algebraic
operations, to calculate limits, derivatives, integrals, etc, and even more to obtain all the alternative proofs of a known
mathematical theorems without any spiritual effort.. Therefore, a number of experts in computer science have already concluded
that in the near future teachers will not be necessary for the process of learning mathematics, because everything will be done
by the computers. “The use of the horses became not necessary” they use to parallelize, “from the time that cars have been
invented”!

Nevertheless, this is actually an illusion. In fact, the acquisition of information is important for the learner, but the most
important thing is to learn how to think logically and creatively. The latter is impossible, at least for the moment, to be achieved
by the computers alone, since computers have been created by the humans and they come into ‘life’ through programming,
which was also done by a human being. Thus the old credo “garbage in, garbage out” is still valid. Therefore, although the
computers dramatically exceed in speed, most probably they will never reach the quality of the human mind. It is true that a new
generation of computers has been created nowadays that are programmed to build new computers being better than them!
However, this does not guarantee at all that eventually they will approach the quality of the human mind. On the other hand, the
practice of students with numerical, algebraic and analytic calculations, with the solution of problems and the rediscovery of the
proofs of the existing theorems, it is necessary to be continued for ever; otherwise students will gradually loose the sense of
numbers, of symbols of space and time, thus becoming unable to create new knowledge and technology.

On the other hand, there is no doubt that computation is nowadays an increasingly essential tool for doing scientific
research. The Artificial Intelligence’s technologies aim at duplicating the capacity of the human mind by adding the advantage
of operating at higher speeds than the mind in computations. It is expected that future generations of scientists and engineers
will need to engage and understand computing in order to work effectively with management systems, technologies and
methodologies. However, all those are related to the need of finding ways of teaching effectively the informatics and especially
the computer programming at school and not to the teaching of mathematics. In this area, computers can certainly play the role
of a valuable tool that makes the learning process easier and more effective, but in no case they can replace the teacher of
mathematics!

Conclusion. In the present work the effects on the development of mathematics education of the schools of mathematical
thought were studied and crucial problems for the future of mathematics education were also discussed. Although those schools
have not succeeded in finding a solid framework for mathematics, most of the recent advances of this science were obtained
through their disputations about the absolute mathematical truth. On the contrary, these disputations have created serious
problems in the sensitive area of mathematics education, the most characteristic being probably the failure of the introduction
of the “New Mathematics” to school education that distressed students and teachers for many years.

In Chinese philosophy Yin and Yang represent all the opposite principles [9]. It is important however to pay attention to
the fact that these two aspects rather complement than oppose each other, with the one containing some part of the other. This
kind of philosophy seems to be suitable to be applied in the field of mathematics education. In fact, although it is logical for each
one of those working in the area to be closer to the ideas of a certain school of mathematical thought, what it is actually needed
is to find a proper balance among the ideas of all those schools by accepting without their advantages and by pointing out their
weaknesses.. In this way the area of mathematics education will find the required tranquillity to be developed smoothly for the
benefit of the future generations.
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CYYACHI MPOBNEMU TA NEPCMEKTUBN MATEMATUYHOI OCBITU
Maiikn Bockornoy
Buwuli mexHonoeiyHuli oceimHili iHcmumym 3axioHoi [peyii, LLUKoaa mexHono02iYHUX 3acmocyeaHs, [peyis

AHomayis. 3 NoA8010 MaMeMamuKU AK OKPeMoi HayKu 3'asunuca 0ea nioxoodu 0o ginocopii mamemamuku: popmanism,
0e aKyeHMyemosCA aKCIOMamMU4YHa OCHOB8A MAMEMAMUYHO20 3micmy, ma iHMyiyioHi3m, AKUl 30cepeodryemoca Ha 38'A3KY
iCHYy8aHHA Mamemamu4Ho20 06’ekmy 3 Moxcaugicmio (o2o nobydosu, npu YbOMy 38epMAEMbLCA y8aza HA npouecu
p038°A3y8aHHA 300a4. Xo4a #OOHIl 3 iCHYrOYUX MAMeMamuyHUX WKis, 8KAYAOYU hopmaniam ma iHmyimusiam, He 8danocs
3Halimu MiyHy ocHosy 048 mamemamuku, Ginbwicms OCMAHHIX 00CA2HEHb UiEl HaOYyKU OomMpUMAHO Yepes iX cyrnepeyku npo
abconromHy mamemamuyHy icmuHy. 3okpema, npomsazom 19-20 i noyamry 20-20 cmonimms napadoKcu meopii MHOXUH 6yau
MPUYUHOO iHMeHcusHoi "siliHu" mixc popmaniamom ma iHmyimusiamom, sKa, 00HaK, byna 3Ha4Ho noanubseHa 8 MaMeMamuyHy
OymKy. Bci uyi cynepevku cmeopusu ceplio3Hi npobaemu y cgpepi cnpuliHammsa mamemamuyHoi oceimu, Halibinbw xapakmepHoro
€, mabymo, Hegoa4a esedeHHsA "HO80I mMamemMamuKu" 00 WKiNbHUX HABYA/ALHUX MPO2PaM, AKa 6azamo pokie mypbysanu
cmydeHmis ma s4umesig. Y pobomi 00cnioxcyromecs cy4acHi npobaemu mamemamuyHOi 0cgimu, maki AK posas Komm'tomepis y
rnpoyeci HABYAHHA MQa 8UBYEHHA MAMEMaMmMUKU, HECMpozicmb esK1i0080i 2eoMmempil' y WKiAbHUX HABYAAbHUX MAAHAX, HAOMIPHA
yeaea, AKy iHOOi npudinAlome eyumesni MamemMamu4yHoMy MOOen8aAHHI0O MA 3AA8KU CMOCOBHO HAbymmsa cmydeHmamu
mMamemMamu4HUX 3HaHb moujo. Takoxc o62080ptotomeca malibymHi nepcnekmMueu HABYAHHA | BUBYEHHA MAMEMAMUKU 8 WKOANI
ma no3a Heto. Cmamms noby0os8aHa HACMYyMHUM YUHOM: KOpomKe 88e0eHHA 00 gpinocoghii mamemamuku. Hago0ameca 0CHOBHI
idei popmanizamy ma iHmyiyioHiamy, ix HacniOku 04 pPo3sUMKYy mamemamu4Hoi ocsimu. [lani sucsimsaMmMbCa OCHOBHI
NUMQAHHA, AKI HOPA3i UiKasaame mux, Xmo npayrtoe 8 2aay3i mamemamuyHoi oceimu. 302asbHi 8UCHOBKU 8 OCHOBHOMY
cmocytomecsa malibymHix nepcriekmus mamemamu4Hoi ocsimu.

Kntouoei cnoea: ¢pinocoia mamemamuku, naamoHiam, napadoKcu meopii MHOMCUH, opmManiam, iHMYyiyioHi3m,
MamemMamu4yHa oceima, pPo368°A3aHHA 3a80aHb, Mamemamuy4He MOOes8AHHA, KOMM'tomepu y HABYAHHI Ma 8UB4YeHHI|
mamemamuku.
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