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1. Introduction

In group theory, findings related to the study of characteristic subgroups (in par-
ticular, the center, the derived subgroup, Frattini subgroup, etc.) and the impact
of properties of these subgroups on the structure of a group are in the focus. Nowa-
days the list of such characteristic subgroups can be broadened by means of different
Σ-norms of a group.

Let Σ be the system of all subgroups of a group which have some theoretical
group property. The intersection NΣ(G) of the normalizers of all subgroups of a
group G which belong to the system Σ is called Σ-norm of a group G. In the case
Σ = ∅, we assume that G = NΣ(G).

For the first time, the notion of the Σ-norm was introduced by Baer in 1934 for
the system Σ of all subgroups of a group G. Such a Σ-norm was called the norm
N(G) of a group G and denoted as the intersection of normalizers of all subgroups
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of a group. Later, the properties of the norm of a group and its impact on the
properties of a group were studied by Baer and his followers.

It should be noted that this direction of research has been quite widespread not
only in group theory, as evidenced by the findings related to generalized norms of
groups for systems of subgroups with different theoretical group properties [1, 6, 7,
10, 14–17], but also in ring theory while investigating Baer-kernel, which is a ring
analogue of the norm of a group [3], and in vector space theory where the norm of
vector subspace is considered in linear groups with finite dimensional orbits [5].

In the study of groups with generalized norms, a number of directions can be
identified:

— the study of groups which coincide with their Σ-norms, i.e. groups, in which all
subgroups of the system Σ are normal [4, 8, 9, 11–13];

— the study of groups in which Σ-norms degenerate into a unit subgroup (or the
center [2]);

— the study of groups which have noncentral Dedekind Σ-norms;
— the study of groups which have proper non-Dedekind Σ-norms [13–15];
— the study of infinite groups which have Σ-norms of finite nonindentity index [10].

Among these directions the authors are most interested in the study of groups
with non-Dedekind Σ-norms. But in the course of conducting such studies, it turns
out that the findings concerning the diametrically opposite case, that is, the condi-
tions under which the Σ-norm is Dedekind, are also useful. Recall that a group is
called Dedekind if all its subgroups are normal. A Σ-norm is called Dedekind if all
subgroups are normal in it.

In this paper, the authors consider the conditions of Dedekindness for the fol-
lowing Σ-norms:

— the norm NG(∞) of infinite subgroups;
— the norm NG(A∞) of infinite Abelian subgroups;
— the norm NG(C∞) of infinite cyclic subgroups;
— the norm NG(Cp) of cyclic subgroups of nonprime order (in particular, infinite

order);
— the norm NG of noncyclic subgroups;
— the norm NA

G of Abelian noncyclic subgroups.

In the next E is the trivial subgroup of a group G and � means the symbol of
a semidirect product.

Note that non-Abelian nonperiodic groups which coincide with given Σ-norms
and contain at least one Σ subgroup are described in [4, 8, 9, 11–13].

2. Preliminary Results

Lemma 2.1. Let Σ be a system of subgroups of a group G and for every Σ-subgroup
S the subgroup S × 〈x〉, where x ∈ G, is also a Σ-subgroup. If a group G contains
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a Σ-subgroup A, which has identity intersection with Σ-norm of a group G, then
Σ-norm is Dedekind.

Proof. Let NG(Σ) be a Σ-norm of a group G and A be a Σ-subgroup such that
A ∩ NG(Σ) = E. Then [A, 〈x〉] ⊆ A ∩ NG(Σ) = E for an arbitrary element x ∈
NG(Σ). By the condition of the lemma 〈A, x〉 = A × 〈x〉 is also a Σ-subgroup and
normalized by NG(Σ). But in this case

(A × 〈x〉) ∩ NG(Σ) = 〈x〉 � NG(Σ).

Thus, the norm NG(Σ) is Dedekind. The lemma is proved.

Corollary 2.1. In a nonperiodic group G with the non-Dedekind Σ-norm, where
Σ is the system of either all infinite, or all infinite Abelian, or all noncyclic, or all
Abelian noncyclic subgroups of a group, an arbitrary Σ-subgroup has a nonidentity
intersection with the Σ-norm.

The following statement describes the relations between different Σ-norms in
nonperiodic groups.

Lemma 2.2. In a nonperiodic group G the following relations take place

Z(G) ⊆ N(G) ⊆ NG(∞) ⊆ NG(A∞) ⊆ NG(C∞),

Z(G) ⊆ N(G) ⊆ NG(Cp) ⊆ NG(C∞),

Z(G) ⊆ N(G) ⊆ NG ⊆ NA
G .

The proof of the lemma follows from the definitions of the corresponding
Σ-norm.

By Lemma 2.2, the Dedekindness of the norms NG(∞), NG(A∞), NG(Cp) fol-
lows from the Dedekindness of the norm NG(C∞) of infinite cyclic subgroups.
Therefore, we will further investigate the conditions under which the norm NG(C∞)
is Dedekind.

Note that all infinite cyclic subgroups of a group G are normal in the case
G = NG(C∞). So by the results of [13] a group G is either Abelian or a group of
the type

G = A〈b〉,
where A is a nonperiodic Abelian group, b4 = 1 and b−1ab = a−1 for an arbitrary
element a ∈ A.

Thus in torsion-free groups the norm NG(C∞) is Abelian, so are NG(A∞),
NG(C∞), NG(Cp) are Abelian. Moreover, in this case, the following statement takes
place.

Lemma 2.3. If G is a torsion-free group, then its norm NG(C∞) of infinite cyclic
subgroups coincides with the center Z(G) of a group.
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Proof. Let G be a torsion-free group and NG(C∞) be the norm of infinite cyclic
subgroups of a group G. Then NG(C∞) is Abelian by [13].

Suppose that NG(C∞) �= Z(G). Then elements x ∈ NG(C∞), y ∈ G with
[x, y] �= 1 exist. Since the group G is torsion-free, |y| = ∞ and the subgroup 〈y〉 is
NG(C∞)-admissible. Therefore x−1yx = y−1 and 〈x〉 ∩ 〈y〉 = E. Since [x2, y] = 1,
〈x2y〉 is x-admissible subgroup and x−1x2yx = x−2y−1 = x2y−1. But in this case
x4 = 1, which contradicts the condition. Thus NG(C∞) = Z(G). The lemma is
proved.

The following statement is a direct consequence of Lemmas 2.2 and 2.3.

Corollary 2.2. If G is a torsion-free group, then

NG(C∞) = NG(A∞) = NG(∞) = NG(Cp) = N(G) = Z(G).

Corollary 2.3. An arbitrary torsion-free group, which is a finite extension of the
Σ-norm, where Σ is the system of either all infinite, or all infinite Abelian, or all
infinite cyclic, all cyclic subgroups of nonprime order, is Abelian.

Proof. By Lemmas 2.3 and 2.4, NG(Σ) = Z(G) for every above-mentioned system
Σ and, hence, [G : Z(G)] < ∞. Therefore |G′| < ∞. Since G is a torsion-free group,
G′ = E and G is Abelian.

Lemma 2.4. If the center Z(G) of a nonperiodic group G contains elements of
infinite order, then the norm NG(C∞) coincides with the center Z(G).

Proof. By the description of groups, all infinite cyclic subgroups of whose are
normal [13], and by condition the norm NG(C∞) is Abelian. Let us show that in
this case every element from NG(C∞) is permutable with all elements of infinite
order of a group G.

Let x ∈ NG(C∞), y ∈ G, |y| = ∞ and [x, y] �= 1. Since NG(C∞) is an Abelian
nonperiodic group, it is generated by elements of infinite order. So, we can consider
that |x| = ∞. Then x−1yx = y−1 and 〈x〉 ∩ 〈y〉 = E. On account of [x2, y] = 1
and the subgroup 〈x2y〉 is x-admissible, x−1x2yx = x−2y−1 = x2y−1. Therefore
x4 = 1, contrary to its choice. Thus, [x, y] = 1 for arbitrary elements x ∈ NG(C∞)
and y ∈ G, |y| = ∞.

Let y ∈ G, |y| < ∞. Then |yz| = ∞, where z ∈ Z(G), |z| = ∞. In the same
manner, we can see that [〈y〉, NG(C∞)] = E. Thus NG(C∞) = Z(G). The lemma
is proved.

Corollary 2.4. If the center Z(G) of a group G contains elements of infinite order,
then

NG(C∞) = NG(A∞) = NG(∞) = NG(Cp) = N(G) = Z(G).
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3. Main Results

Let us consider the conditions under which the mentioned generalized norms are
Dedekind. The following statement generalizes Corollary 2.2 and characterizes the
norm of infinite subgroups in nonperiodic groups.

Theorem 3.1. In a nonperiodic group G the norm NG(∞) of infinite subgroups
is Abelian. Moreover, NG(∞) coincides with the center of a group G, if it is a
nonperiodic group.

Proof. Let the norm NG(∞) be torsion and x ∈ G be an arbitrary element of
infinite order. Since the subgroup 〈x〉 is NG(∞)-admissible, it is normal in the group
G1 = 〈x〉NG(∞). Therefore G1 = 〈x〉 × NG(∞) and x ∈ Z(G1). By Corollary 2.4
NG1(∞) = Z(G1). Thus, the norm NG1(∞) of the subgroup G1 is Abelian and by
NG(∞) ⊆ NG1(∞) the norm NG(∞) is also Abelian.

Let us consider the case when the norm NG(∞) is nonperiodic. By Lemma 2.2
NG(∞) ⊆ NG(C∞). Thus the norm NG(C∞) is also nonperiodic. On account of the
description of nonperiodic groups, in which all infinite cyclic subgroups are normal
[13], the group NG(C∞) and with it the group NG(∞) are soluble. Therefore NG(∞)
is Abelian by [4]. Let us show that in this case NG(∞) = Z(G).

Suppose that elements a ∈ NG(∞) and x ∈ G with [a, x] �= 1 exist. If |x| = ∞,
then the subgroup 〈x〉 is NG(∞)-admissible. Then by [a, x] �= 1, we conclude that
NG(∞) ∩ 〈x〉 �= E. Thus xk ∈ NG(∞) for some natural number k. Then a−1xka =
x−k = xk and x2k = 1, contrary to the choice of the element x. From this, we
conclude that NG(∞) ⊆ CG(〈x〉) for any element x of infinite order of a group G.

Let |x| < ∞, |a| = ∞. Let us consider a normal closure A = 〈a〉〈x〉 of the
subgroup 〈a〉 in the group G1 = 〈x〉NG(∞). The subgroup A is finitely generated
nonperiodic Abelian. Its torsion part T (A) is finite, so A|T (A)| = A1 is an Abelian
torsion-free group of finite rank and A1 � G1. Then An

1 � G1 for any natural
number n. Thus,

∞⋂

n=1

An
1 〈x〉 = 〈x〉 � G1

and, hence, [A1, 〈x〉] = E. Let a1 ∈ A1 and |a1| = ∞. Then |a1x| = ∞ and by the
proved above NG(∞) ⊆ CG(〈a1x〉). Therefore NG(∞) ⊆ CG(〈x〉), i.e. NG(∞) ⊆
Z(G) and, hence, NG(∞) = Z(G). The theorem is proved.

The following example confirms that in Theorem 3.1 in proving the equality
NG(∞) = Z(G), we cannot ignore the nonperiodicness of the norm NG(∞).

Example 3.1. In the group G = (〈a〉 × 〈b〉)〈c〉, where |a| = |c| = 4, |b| = ∞,
c2 = a2, c−1ac = a−1, c−1bc = b−1, the norm NG(∞) = 〈a〉 of infinite subgroups
is an Abelian torsion group which is different from the center Z(G) = 〈a2〉 of the
group.
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Indeed, NG(∞) ⊆ NG(〈bn, c〉 ∩ 〈b4, bc〉) = 〈a〉, where n is natural number, the
element a is contained in the normalizer of every infinite subgroup.

Note that all infinite cyclic and all infinite Abelian subgroups are normal in this
group. Therefore NG(C∞) = NG(A∞) = G.

Corollary 3.1. If the norm NG(∞) of a nonperiodic group G has a finite index in
a group, then NG(∞) = Z(G).

Summarizing the above results, we give sufficient conditions of the Dedekindness
of Σ-norms for systems of infinite Abelian, infinite cyclic and cyclic subgroups of
non-prime order.

Theorem 3.2. In a nonperiodic group G the norms NG(C∞), NG(A∞), NG(Cp)
are Abelian in each of the following cases :

(1) the center Z(G) contains elements of infinite order ;
(2) any of the given Σ-norms is torsion;
(3) a group G contains an infinite cyclic subgroup 〈x〉 which has an identity inter-

section with Σ-norm (NG(C∞), NG(A∞), NG(Cp));
(4) a group G contains a Σ-subgroup A which has an identity intersection with

Σ-norm;
(5) G is an involution-free group.

Proof. (1) The first statement of the theorem follows from Corollary 2.4.

(2) Let the norm NG(Σ) for any of mentioned systems of subgroups be torsion. Then
〈x〉∩NG(Σ) = E for an arbitrary element x ∈ G, |x| = ∞. Since the subgroups 〈x〉
and NG(Σ) are normal in the group G1 = 〈x〉NG(Σ), so G1 = NG(Σ) × 〈x〉. Thus,
x ∈ Z(G1) and by the proved above both the norm NG1(Σ) and the norm NG(Σ)
are Abelian.

(3) Let x ∈ G, |x| = ∞ and 〈x〉⋂
NG(Σ) = E, where NG(Σ) be the norm of infinite

cyclic, infinite Abelian or cyclic subgroups of nonprime order. Since 〈x〉 is NG(Σ)-
admissible, x ∈ Z(G1), where G1 = 〈x〉NG(Σ). By the proved in the case (1) the
norm NG1(Σ) is Abelian, hence, the norm NG(Σ) ⊆ NG1(Σ) is also Abelian.

(4) If Σ consists of all infinite Abelian or all infinite cyclic subgroups, then the Σ-
norms are Dedekind by Lemma 2.1 and the above case of the theorem, respectively.

Let Σ be the system of all cyclic subgroups of nonprime order and A = 〈x〉 be a
Σ-subgroup such that 〈x〉∩NG(Cp) = E. If |x| = ∞ or the norm NG(Cp) is torsion,
then it is Abelian by the proved above. Thus, it remains to exclude the case, when
NG(Cp) is a nonperiodic group and the subgroup 〈x〉 has nonprime order.

Suppose that the subgroup NG(Cp) is non-Abelian. Then NG(Cp) is a nonpe-
riodic almost Dedekind group. By [8] NG(Cp) = C � 〈b〉, where C is a nonperiodic
Abelian group, |b| = |bc| = 2, b−1cb = c−1 for any element c ∈ C. Since the sub-
group 〈x〉 is NG(Cp)-admissible, 〈x〉 ⊆ Z(G1), where G1 = 〈x〉NG(Cp). Thus, G1
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is an almost Dedekind group, whose center contains elements of composite order,
which is impossible. So the norm NG(Cp) is Abelian.

(5) If G is an involution-free group. Then its norm NG(C∞) of infinite cyclic sub-
groups is Abelian. Thus, all mentioned generalized norms are Abelian.

The theorem is proved.

Corollary 3.2. If the center Z(G) of a nonperiodic group G contains elements of
composite order, then the norm NG(Cp) is Abelian.

Proof. On account of the above theorem, it is enough to consider the case when
the norm NG(Cp) is nonperiodic.

Suppose that the subgroup NG(Cp) is non-Abelian. So it is a nonperiodic almost
Dedekind group and by [8] NG(Cp) = C � 〈b〉, where C is a nonperiodic Abelian
group, |b| = |bc| = 2, b−1cb = c−1 for any element c ∈ C. Since the center of such
a group does not contain elements of composite order, the assumption is false and
the norm NG(Cp) is Abelian.

Corollary 3.3. In a nonperiodic group G the norms of infinite cyclic, infinite
Abelian and infinite subgroups of nonprime order are either Abelian (torsion or
nonperiodic) or non-Abelian nonperiodic groups whose corresponding systems of
infinite subgroups are normal.

Thus, the condition of Dedekindness of the norms of infinite, infinite cyclic,
infinite Abelian and infinite subgroups of nonprime order of nonperiodic groups is
equivalent to the condition of Abelity of these norms.

The task is now to find the conditions under which the norm of noncyclic and the
norm of Abelian noncyclic subgroups are Dedekind. Note that non-Abelian groups,
whose all noncyclic or Abelian noncyclic subgroups (provided such subgroups exist
in a group) are normal, were studied in [9, 11, 12] and were called H-groups and
HA-groups, respectively.

Theorem 3.3. The noncyclic norm NG of a nonperiodic locally soluble by finite
group G is Dedekind, if the one of the following conditions takes place:

(1) a group G contains a noncyclic subgroup A such that A ∩ NG = E;
(2) the noncyclic norm NG of a group G is torsion;
(3) a group G contains a nonidentity cyclic NG-admissible subgroup 〈g〉, such that

〈g〉 ∩ NG = E;
(4) a group G contains a free Abelian subgroup of rank 2;
(5) a group G has the torsion center Z(G);
(6) a group G contains a finite Abelian noncyclic subgroup;
(7) G is a torsion-free group.

Proof. (1) The validity of this assertion follows from Lemma 2.1 for the system Σ
of all noncyclic subgroups of a group.
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(2) Let NG be a torsion non-Dedekind group. Let us consider an element x ∈ G,
such that |x| = ∞ and the group G1 = 〈x〉NG. By the description of torsion non-
Hamiltonian H-groups (see [11, 12]), to which the norm NG applies, this norm
contains a finite characteristic subgroup M . Then M � G1, CG1(M) � G1 and
[G1 : CG1(M)] < ∞. Thus, the element x1 ∈ 〈x〉, |x1| = ∞, [〈x1〉, M ] = 1 exists.
But then 〈x1, M〉 is noncyclic, so it is NG-admissible.

Let |M | = m. Then the subgroup 〈xm
1 〉 is also NG-admissible. Since [〈xm

1 〉, NG] ⊆
〈xm

1 〉 ∩ NG = E, the subgroup it is 〈a, xm
1 〉 is Abelian noncyclic for an arbitrary

element a ∈ NG and, hence, i NG-admissible. But then

〈a〉 =
∞⋂

k=1

〈a, xkm
1 〉 ∩ NG � NG.

for any natural number k

Therefore NG is Dedekind.

(3) Let 〈g〉 be a cyclic subgroup which satisfies the condition (3) of the theorem.
Suppose that the norm NG is non-Dedekind. Then it is nonperiodic and a non-
Hamiltonian H-group of one of the types:

(i) G = 〈a〉 � 〈b〉, |a| = pn, n �= 1 (n > 1 if p = 2), |b| = ∞, [a, b] = apn−1
;

(ii) G = H × B, where H ≤ h1, h2 >, |h1| = |h2| = 4, h2
1 = h2

2 = [h1, h2], B is
an infinite cyclic group or a group isomorphic to an additive group of dyadic
numbers.

Since

[〈g〉, NG] ⊆ 〈g〉 ∩ NG = E,

the subgroup 〈g, x〉 is Abelian noncyclic for an arbitrary element x ∈ NG, |x| = ∞.
Therefore,

〈g, x〉 ∩ NG = 〈x〉 � NG

and all infinite cyclic subgroups are normal in the norm NG, which contradicts the
properties of the subgroup NG.

(4) Let a group G contain a free Abelian subgroup A = 〈x〉 × 〈y〉, where |x| =
|y| = ∞, and its noncyclic norm NG be non-Dedekind. By the proved above NG is
a nonperiodic H-group of one of the types mentioned in (3).

Since the norm NG does not contain free Abelian subgroups of rank 2, we
can assume that 〈x〉 ∩ NG = E. Taking into account that the subgroup 〈x, yk〉 is
NG-admissible for any natural number k, the subgroup 〈x〉 =

⋂∞
k=1〈x, yk〉 is also

NG-admissible. By the condition (3) of the theorem the subgroup NG is Dedekind.

(5) Suppose that the norm NG of noncyclic subgroups of a group G is non-Dedekind.
Then by the proved above NG is a nonperiodic H-group of one of two types men-
tioned in (3).

Let denote by Z a natural power of the center Z(NG) which does not contain
nonidentity elements of finite order. Then Z is an infinite cyclic group or a group
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isomorphic to an additive group of dyadic numbers. We are now in a position to
show that Z ⊆ Z(G).

Let x ∈ G, |x| < ∞. Then 〈x, Zpk〉 � G1 = 〈x〉NG for a prime number p �= 2
and an arbitrary natural number k. Therefore

∞⋂

k=1

〈Zpk

, x〉 = 〈x〉 � G1

and [〈x〉, Z] ⊆ Z ∩ 〈x〉 = E.
Let us prove that the subgroup Z centralizers every element x ∈ G of infinite

order. Let z ∈ Z and x−1zx = z1, z1 ∈ Z. Since 〈x〉 ∩ Z �= E, zn ∈ 〈x〉 for some
natural number n by the locally cyclicity of the group Z. So x−1znx = zn

1 = zn,
z = z1 and [x, z] = 1. Thus, Z ⊆ Z(G) and the center Z(G) of a group contains
elements of infinite order, which contradicts the condition. So, the noncyclic norm
of a group can not be non-Dedekind.
(6) Let A be a finite Abelian noncyclic subgroup of a group G. Suppose, contrary to
the condition, that the noncyclic norm NG is non-Dedekind. Since the center Z(G)
is nonperiodic by the proved above, the subgroup 〈a, z〉 is noncyclic for arbitrary
elements a ∈ A, a �= 1 and z ∈ Z(G), |z| = ∞, and therefore it is NG-admissible.
So the subgroup 〈a〉 is also NG-admissible. On account of A � NG, we can point
such an element x ∈ A, 〈x〉 ∩ NG = E. Since the subgroup 〈x〉 is NG-admissible,
the noncyclic norm NG is Dedekind by (3) of the theorem. The contradiction.
(7) Let G be a torsion-free group. Suppose that its noncyclic norm NG is non-
Dedekind. Then NG is a torsion-free H-group, contrary to the description of such
groups [11].

The theorem is proved.

Corollary 3.4. If the norm NG of noncyclic subgroups of a nonperiodic locally
soluble by finite group G is non-Dedekind, then every noncyclic subgroup and every
cyclic subgroup, normal in G, have a nonidentity intersection with the norm NG.

Corollary 3.5. If the norm NG of noncyclic subgroups of a nonperiodic locally
soluble by finite group G is non-Dedekind, then the center Z(G) of a group contains
elements of infinite order.

Corollary 3.6. A nonperiodic locally soluble by finite group G with non-Dedekind
noncyclic norm NG does not contain finite Abelian noncyclic subgroups.

The next task is to find conditions under which the norm NA
G of noncyclic

subgroups of a nonperiodic group is Dedekind.

Lemma 3.1. Let G be a nonperiodic group, NA
G be the norm of noncyclic sub-

groups and a group G contain a nonidentity NA
G -admissible subgroup H such that

NA
G ∩ H = E. If the norm NA

G is nonperiodic, then all infinite cyclic subgroups are
normal in it. In particular, NA

G is Dedekind, if for an arbitrary nonidentity element
y ∈ NA

G an element h ∈ H such, that the subgroup 〈y, h〉 is noncyclic, exists.
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Proof. Since H is NA
G -admissible and NA

G � G, HNA
G = H ×NA

G . Let x ∈ NA
G and

|x| = ∞. Then for h �= 1 and h ∈ H the subgroup 〈x, h〉 is Abelian noncyclic and
therefore NA

G -admissible. So 〈x, h〉∩NA
G = 〈x〉�NA

G , which is the desired conclusion.
Suppose that for an arbitrary element y ∈ NA

G , y �= 1 the element h ∈ H such, that
the subgroup 〈y, h〉 is noncyclic, exists. Then 〈y, h〉 ∩ NA

G = 〈y〉 � NA
G and the

subgroup NA
G is Dedekind. The lemma is proved.

Theorem 3.4. The norm NA
G of Abelian noncyclic subgroups of a nonperiodic

group G is Dedekind in each of the following cases :

(1) a group G contains an Abelian noncyclic subgroup A such that A ∩ NA
G = E;

(2) a group G contains an infinite cyclic NA
G -admissible subgroup 〈g〉 such that

〈g〉 ∩ NA
G = E;

(3) the norm NA
G is finite.

Proof. (1)–(2) The proof of (1) and (2) of the theorem follows from Lemma 3.1.

(3) Let us show that when the condition (3) is fulfilled the norm of Abelian noncyclic
subgroups is Dedekind.

Let |NA
G | < ∞. Since NA

G � G, [G : CG(NA
G )] < ∞ and the centralizer CG(NA

G )
contains an element g of infinite order. Since the subgroup 〈g〉 is NA

G -admissible,
the further proof is reduced to the application of the case (2) of the theorem. The
theorem is proved.

We note, that under the conditions stated in Theorem 3.4, since NG ⊆ NA
G , the

norm NG of Abelian noncyclic subgroups is Dedekind.
The below example confirms that the norm of Abelian noncyclic subgroups

and the norm of noncyclic subgroups of a nonperiodic group in contrast to the
above-mentioned norms NG(C∞), NG(A∞), NG(∞), NG(Cp) of different systems
of infinite subgroups can be Hamiltonian.

Example 3.2. In the group

G = H × (〈a〉 � 〈b〉),
where H = 〈h1, h2〉 is a quaternion group of order 8, |a| = ∞, |b| = 2, b−1ab = a−1,
both the norm NA

G of Abelian noncyclic subgroups and the norm NG of noncyclic
subgroups are Hamiltonian and coincide with the subgroup H .

Indeed,

NG ⊆ NA
G ⊆ NG(〈h2

1〉 × 〈ab〉) ∩ (〈h2
1〉 × 〈b〉) = H.

Besides, every Abelian noncyclic subgroup of the group G contains H2 = 〈h2
1〉

and [H, G] = 〈h2
1〉. Therefore NA

G = H . In the same manner, it is easy to see
that the subgroup H normalizers every noncyclic subgroup of the group G. Thus
NG = H .
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Corollary 3.7. If the norm NA
G of Abelian noncyclic subgroups of a group G is

non-Dedekind, then every Abelian noncyclic subgroup and every normal infinite
cyclic subgroup have with the norm NA

G a nonidentity intersection.

Corollary 3.8. If the norm NA
G of Abelian noncyclic subgroups of a nonperiodic

group G is non-Dedekind and torsion, then all Abelian torsion-free subgroups of a
group are cyclic and NA

G is infinite.
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