Аuthor уважає приємним боргом подякувати проф. Л. І. Білоусовій за інтерес до роботи і низку цінних зауважень.

ЛІТЕРАТУРА

РЕЗЮМЕ
Л. Л. Рыкова. Некоторые дидактические условия использования моделей в преподавании естественных и математических дисциплин в процессе подготовки будущего учителя.

В статье исследованы дидактические условия использования моделей в процессе подготовки учителей естественно-математических дисциплин. Выделены и обоснованы как основные три дидактических условия – комбинированное использование структурных и функциональных моделей; реализация эволюционных цепочек моделей; использование моделей-аналогов, заимствованных из жизненного и интеллектуального опыта. Дидактические условия проиллюстрированы примерами.

Ключевые слова: модель, дидактическое условие, преподавание естественно-математических дисциплин, подготовка будущего учителя.

SUMMARY
L. Rykova. Some didactic models in terms of teaching natural and mathematical disciplines in the preparation of future teachers.

This article discusses the teaching conditions of using the models in the process preparation teachers of natural and mathematical sciences. Allocated and justified as the main teaching three conditions – the combined use of structural and functional models, implementation of the evolutionary chain of models, use models-analogies drawn from the life and intellectual experience. Teaching conditions are illustrated by examples.

Key words: model, condition of didactic, teaching of natural and mathematical sciences, preparation of future teachers.

УДК 371.134:530.145(07)

М. І. Садовий, О. М. Трифонова
Кіровоградський державний педагогічний університет ім. В. Винниченка

ФОРМУВАННЯ СУЧАСНИХ ПІДХОДІВ ДО ВИВЧЕННЯ ВИМІРЮВАНЬ ФІЗИЧНИХ ВЕЛИЧИН У ПІДГОТОВЦІ ВЧИТЕЛІ ФІЗИКИ

У статті запропонований ряд методичних порад щодо удосконалення змісту фізичної освіти, зокрема щодо вивчення особливостей вимірювання фізичних характеристик мікроб’єктів у педагогічних ВНЗ в умовах реформування освітньої галузі. Високий науковий рівень навчання фізики у вищій школі передбачає вивчення студентами фізичної науки, зокрема квантової фізики, на сучасному етапі її розвитку.

Ключові слова: вимірювання фізичних величин, квантові фізики, навчання студентів.

Постановка проблеми. Фізика як наука про явища природи становить фундамент сучасного природознавства. Їй належить виключне місце в
загальній системі знань, накопичених людством. Тривалий час фізика демонструє той ідеал, до якого повинна прямувати будь-яка галузь знань, коли на основі порівняно невеликої кількості принципів, добре обґрунтованих експериментально, спираючись на потужний математичний апарат, можна одержати велику кількість чітких і логічно обґрунтованих наслідків і передбачити кінцевий результат процесу за вихідними даними. Послідовне вивчення курсу фізики формує специфічний логічний метод мислення, наукову інтуїцію, котрі виявляються надзвичайно плідними і в інших науках [2, 142].

В умовах бурхливого розвитку новітніх технологій виробництва роль фізики надзвичайно зростає, і не лише як базової для технічних наук, що слугує джерелом широких галузей промисловості, але і як фундаментальної світоглядної [2, 142].

Отже, студент повинен не лише засвоїти знання на більш високому рівні, в порівнянні з тим, який доступний майбутнім його учням, але й оволодіти методами отримання цих знань. В умовах стрімкого зростання обсягу знань, що накопичуються людством, і обмеженого терміну навчання спеціаліста у ВНЗ особливої ваги набувають наукові методи оволодіння знаннями, котрі озброюють майбутнього спеціаліста методологією пояснення і засвоєння нового знання. Тому постало завдання формувати у студентів, майбутніх учителів фізики вміння відбирати найважливіше із всього потоку інформації, яка постійно збільшується, оперативно її опрацювати, визначити місце в майбутній роботі [2, 5–6].

Стратегічною метою розвитку освітянської галузі України є входження в загальноєвропейську систему вищої освіти, яка ґрунтується на спільності фундаментальних принципів її функціонування. Входження національної системи освіти та науки в єдиний європейський освітній простір передбачає реалізацію наступних вимог, критеріїв і стандартів: постійне навчання впродовж усього життя; мотивоване залучення студентів до навчання; сприяння привабливості та конкурентоспроможності наших випускників у європейському просторі вищої освіти і науки та інших регіонах світу.

Реалізація цієї програми сприяє: модернізації всієї національної системи освіти в цілому; наближення якості вітчизняної освіти до вимог загальноєвропейських стандартів; запровадженню системи кредитів, сумісної з європейською кредитно-трансферною системою навчання; підвищення рівня мобільності громадян України в межах «Болонського науково-освітнього простору»; запровадженню в Україні міжнародної системи оцінювання рейтингів ВНЗ та студентів.
Із приєднанням України до Болонського процесу досить велика кількість годин на вивчення навчальних дисциплін виноситься на самостійне вивчення. Проблема ускладнюється і тим, що новітні питання фізики не включені до загального курсу фізики, якими, на нашу думку [4], варто доповнити навчальний матеріал. За таких умов студенти повинні не лише вивчити наявний у посібниках матеріал, але знайти і ознайомитись з новітніми досягненнями науки. Цей процес ускладнюється відсутністю достатньої кількості літературних джерел, адже як показує аналіз традиційних посібників з квантової фізики [4] їх зміст не достатньо повно відображає сучасний стан розвитку фізичної науки.

Високий науковий рівень навчання фізики у вищій школі неможливий без застосування відповідного математичного та понятійного апарату.

Фізика включає фундаментальні фізичні теорії – класичну механіку, молекулярно-кінетичну теорію й феноменологічну термодинаміку, електродинаміку, квантову фізику. Найбільш новою є квантовая фізика. Розробка методики її навчання явно слабка.

Межі застосування у кожної теорії різні. Так, класична механіка описує рух макроскопічних тіл при швидкостях, істотно менших швидкості світла. Ці межі з’явилися лише після створення СТО. Релятивістська механіка розширила класичну на випадок великих швидкостей. Цінність механіки Ньютонів при цьому не зменшилася – для малих швидкостей тіл (в порівнянні зі швидкістю світла) поправки малі. При створенні квантової механіки значна частина вчених вважали, що важливо будувати нову теорію так, щоб співвідношення між величинами були аналогічні класичним, тобто кожній класичній величині потрібно було поставити у відповідність квантову, а потім знайти співвідношення між квантовими величинами, користуючись класичними законами. Такі відповідності можна було знайти лише з операцій вимірювання. Так виникли постулати Бора.

Аналіз актуальних досліджень. У науково-методичних і педагогічних дослідженнях проблему відображення сучасної фізики в курсі загальної фізики для педагогічних ВНЗ та шкільному курсі фізики з наголосом на фундаментальні наукові принципи і новий виклад незмінного за обсягом навчального матеріалу розглядали К. А. Антонюк, П. С. Атаманчук, Р. В. Ващилин, С. П. Величко, І. І. Логвінов, О. І. Ляшенко, М. Т. Мартинюк, В. П. Сергієнко, Б. А. Сусь, М. І. Шут [4].

Одним з шляхів вирішення проблеми є виділення специфічних ознак формування фізичних знань з квантової та класичної фізики з урахуванням співвідношення теоретичного та емпіричного, дуалістичного й гіпотетичного, дискретного та неперервного розглянути дослідниками Г. М. Голіним,

Мета статті – показати спільність і відмінність основних принципів і законів класичної та квантової фізики, і на цій основі визначити методичні можливості удосконалення змісту фізичної освіти, зокрема квантової фізики, в педагогічних ВНЗ.

Виклад основного матеріалу. Одним з найважливіших критеріїв визнання фізичної теорії є узгодження результатів розрахунків з відповідними експериментальними даними, а також прогнозування результатів подальших вимірювань за вже навичными. Важливо, щоб студенти зрозуміли, що питання про вимірювання фізичних характеристик мікрооб’єктів займає в квантовій механіці важливе місце і корінним чином відрізняється від трактування процесу вимірювання в класичній фізиці.

Людина живе в макроскопічному світі та є макроскопічним об’єктом. Ця обставина нібито вимагає, щоб прилад (детектор) для квантових вимірювань був також макроскопічним об’єктом, що дозволяє зробити доступною людині інформацію, що отримується за його допомогою. Більш того, прилад, що виконує квантові вимірювання, має бути макроскопічним пристроєм, що знаходиться в дуже нестійкому стані, щоб дія на нього з боку мікрооб’єкту могла б легко змінити його стан. Наприклад, у бульбашковій камeri переріта прозора рідина миттєво починає закипати, по шляху пролітання через неї зарядженої частинки. Бульбашки пари, що утворилися, дозволяють бачити траєкторію частинки. При цьому товщина сліду частинки (траєкторія) виявляється дуже великою (широкою) в порівнянні з розмірами атомів, що підтверджує співвідношення невизначеностей. У такому грубому наближенні мікрооб’єкт можна розглядати класично [1].

Є фактом, що детектор обов’язково істотним чином змінює стан мікрооб’єкту, з яким він взаємодіє. У класичній фізиці вважається, що вплив приладу на об’єкт можна зробити як завгода малим. У квантових вимірюваннях принципово не можна нехтувати взаємодією детектора з мікрооб’єктом, оскільки у цьому випадку об’єктом спостереження є не сам мікрооб’єкт, а він сам у поєднанні з вимірювальним приладом і, зрештою, з спостерігачем. Тому неконтрольований характер взаємодії детектора з мікрооб’єктом приводить до необхідності імовірнісного опису квантових процесів, оскільки вимірювання непередбачувано руйнує колишній стан мікрооб’єкта. У чинних підручниках та посібниках на вказані обставини не наголошено, а відповідно студенти це мало усвідомлюють.

На нашу думку, суб’єкти навчання мають чітко усвідомити, що процес квантового вимірювання незворотний: в результаті вимірювань хвильова
функція мікрооб’єкту змінюється стрибком, тобто відбувається редукція хвильової функції. Абсолютно неймовірне відновлення первинного стану мікрооб’єкту і приладу після того, як відбувся процес вимірювання. Тому необоротність процесу вимірювання відіграє фундаментальну роль у квантовій фізиці.

Через необоротність процесу квантових вимірювань виникає невідтворюваність результатів одниничних вимірювань. У кожному акті вимірювання взаємодія детектора з мікрооб’єктом відбувається по-різному і результати вимірювань відрізняються. Тільки достатньо велике число вимірювань дасть певну стійку картину розподілу результатів. Така картина може бути отримана і в іншій серії достатньо великого числа вимірювань. На цю особливість навчально-методична література не орієнтована.

Ми вважаємо, що необхідно наголосити на такій особливості мікрооб’єктів. Чисельні дослідження показали, що стан мікрооб’єкту не визначений до вимірювання. Ряд вимірювань, проведених однім і тим же детектором, здавалося б, ідентичних мікрооб’єктів, дасть набір різних результатів. Якщо пучок електронів проходить через щілину в екрані, то різні електрони потраплять у різні точки фотопластини і на ній виникне певна дифракційна картина. У цьому випадку можна вказати тільки ймовірність попадання електронів у різні точки фотопластини. Або виникає певний статистичний розподіл електронів на фотопластині, який не є хаотичним. Завданням квантової механіки є визначення розподілу ймовірності різних фізичних величин, що вимірюються та характеризують мікрооб’єкти.

Для того, щоб упевниться у міцності одержаних суб’єктами навчання знань, на нашу думку, варто запропонувати ускладнити експеримент з проходженням електронів через щілину в екрані. Для цього якно поставимо на шляху пучка електронів екран з двома щілинами A і B (рис. 1).

Якщо відкрита тільки щілина A в екрані, а щілина B закрита, то поведінка електронів у цьому випадку описуватиметься хвильовою функцією \(\psi_1 \) (крива \(I_1(x) \)). Якщо ж закрита щілина A, а щілина B відкрита, то поведінка електронів описуватиметься хвильовою функцією \(\psi_2 \) (крива \(I_2(x) \)). Якщо відкрито одночасно обидві щілини в екрані, то хвильова функція електронів рівна \(\psi = \psi_1 + \psi_2 \). При цьому кожен електрон внаслідок своєї хвильової природи проходить одночасно через обидві щілини в екрані (крива \(I(x) \)).
Щільність ймовірності такого процесу визначається формулою:

$$\omega = \left| \psi \right|^2 = \left| \psi_1 \right|^2 + \left| \psi_2 \right|^2 + \left(\psi_1^* \psi_2 + \psi_1 \psi_2^* \right).$$

(1)

Третій член у формулі (1) описує інтерференцію хвиль, що проходять одночасно через першу і другу щілини в екрані. Якщо ж електрони пропускаються через почергово відкриті щілини, тообо контролюється їх проходження через певну щільину в екрані, то розподіл ймовірності такого процесу визначатиметься сумою ймовірностей проходження електронів через кожну щільину окремо:

$$\tilde{\omega} = \left| \psi_1 \right|^2 + \left| \psi_2 \right|^2.$$

(2)

В такому експерименті інтерференція зникає, тобто спроба проконтролювати проходження електрона через певну щільину в екрані знищує інтерференцію (крива $I_3(x)$). Інакше кажучи, таке вимірювання руйнує інтерференцію.

Виділяється рівністю ядер в атомних і субатомних процесів характерна єдність вимірюваного приладу (детектора) і мікрооб’єкту, над яким проводиться вимірювання, тобто неможливо розділити взаємний вплив засобів спостереження і самого явища. Ця неусувна єдність макроскопічного (класичного) приладу і аналізованого мікрооб’єкту призводить до їх неконтрольованої взаємодії, що змінює стан мікрооб’єкту. В дослідженні ми маємо справу не окремо з об’єктом, що підлягає спостереженню, і приладом, що неконтрольованим чином впливає на нього, а з явищем, що представляє собою єдність об’єкту і приладу.

При вивченні даної теми варто одночасно проводити аналогії між класичною і квантовою фізикою, і в той же час показувати їх принципові відмінності. Квантовая механіка є імовірнісною теорією і цим докорінно відрізняється від класичної механіки. Проте вона переходить в класичну механіку в граничному випадку, коли стала Планка \hbar стає несучією. Формально перехід до класичної механіки здійснюється шляхом прямування цієї величини до нуля, $\hbar \rightarrow 0$. Квантовая механіка нерозривно пов’язана з класичною тим, що вона потребує класичної механіки для свого обґрунтування.

Перехід $\hbar \rightarrow 0$ можна зрозуміти на такому прикладі. Якщо квантове число $n \gg 1$, то (згідно з постулатами Бора $m\nu_n r_n = n\hbar$) момент імпульсу електрона в атомі стає дуже великим в порівнянні зі сталою Планка $m\nu_n r_n \gg \hbar$. Інакше кажучи, у разі $n \gg 1$ константою \hbar можна нехтувати, а дискретність моменту імпульсу електрона зникає. Отже, квантовая механіка
переходить у кlasичную в разі великих значень квантових чисел, що виражає зміст принципу відповідності, вперше сформульованої Бором.

Зокрема, це означає, що для великих квантових чисел частота випромінювання, випущеного атомом при переході з одного стану в інший, асимптотика збігається з частотою, що передбачається класичною теорією. Якщо атом переходить із збудженого стану з енергією E_{n+1} в стан з енергією E_n, то частота переходу рівна $\omega_n = \frac{(E_{n+1} - E_n)}{h}$, де величини E_{n+1} і E_n визначаються формулою $(E_n = -\frac{me^4}{2h^2n^2})$. Тоді маємо:

$$\omega_n = \frac{me^4}{2h^3n^2} \left[1 - \left(\frac{n}{n+1} \right)^2 \right].$$

Для $n >> 1$ отримуємо $1 - \left(\frac{n}{n+1} \right) \approx \frac{2}{n}$. Тому знаходимо:

$$\omega_n = \frac{me^4}{h^3n^2} = \frac{\nu_n}{r_n}.$$

де швидкість електрона ν_n і «радіус орбіти» r_n визначаються формулами:

$$r_n = \frac{h^2}{me^2n^2}, \quad \nu_n = \frac{e^2}{hn}.$$

У класичній механіці частота обертання електрона $\tilde{\omega}$ пов’язана з його швидкістю ν на орбіті радіусу r співвідношенням $\tilde{\omega} = \frac{\nu}{r}$. Для $n >> 1$ квантовий результат збігається з класичним. Більш того, відстань між сусідніми енергетичними рівнями атома водно прагне до нуля для великих квантових чисел ($n \rightarrow \infty$). У цьому граничному випадку дискретність енергетичного спектру атома стає малопомітною, а атом поводиться подібно до класичної системи [1].

Приведений не простий для розуміння студентів матеріал варто доповнити деяким історичним матеріалом, що сприятиме підвищенню до нього зацікавленості з боку суб’єктів навчання, а також забезпечити краще розуміння студентами всіх етапів становлення квантової фізики. Внаслідок свого імовірнісного підходу до пояснення мікропроцесів квантової механіки в період свого становлення відкидалася дослідженнями низки вченіх. Одним з противників квантової теорії був А. Ейнштейн, що свого часу
багато зробив для її утвердження (пояснення фотоефекту). Він пропонував різні аргументи для того, щоб довести неспроможність квантової механіки. Але інший видатний фізик Нільс Бор незмінно знаходив контраргументи, що доводили, що переконливість квантової фізики.

У 1935 р. з’явилася робота Альберта Ейнштейна, Бориса Подільського і Натана Розена, в якій був висунутий їх відомий парадокс. За початковими літерами прізвищ авторів його прийнято називати ЕПР-парадоксом. Не висловлюючи суті цього та інших парадоксів, що висувалися в період розвитку квантової механіки для доказу її неповноти, відзначимо тільки, що мудрість Нільса Бора знаходила вирішення всіх цих парадоксів. Саме Н. Бор незмінно доводив справедливість квантової механіки і неспроможність парадоксів, що висувалися.

Дискусії про повноту квантово-механічного опису мікрооб’єкту призвели до думки про те, що, можливо, невизначеність в поведінці квантового об’єкту пояснюється існуванням деяких прихованих параметрів, про які спостерігачам нічого не відомо. Саме наявність цих прихованих параметрів могла б привести до імовірнісної поведінки мікрооб’єктів і невизначеності результатів вимірювань. З такого підходу витікало, що знання прихованих параметрів дозволили б точно передбачити поведінку мікрооб’єкту, тобто переміг би детермінізм класичної механіки і можна було б відмовитись від імовірнісного опису.

Перший доказ неможливості існування прихованих параметрів дав Дж. фон Нейман. Проте була потрібна така постановка питання, яка експериментально підтверджувала б відсутність прихованих параметрів. Таке сталося у 1965 р. Джон Белл висловив твердження (теорема Белла), яке дозволило експериментально з’ясувати відмінність між прогнозами квантової механіки і теорії прихованих параметрів.

Експерименти, засновані на теоремі Белла, провели в 1972 р. Джон Клаузер і Стюарт Фрідман у Каліфорнійському університеті, а також у 1982 р. Алан Аспек, Джейн Далібар і Жерар Роже в Парижькому інституті оптики. Ці та деякі інші експерименти засвідчували правильність квантової механіки і несправедливість теорії прихованих параметрів. Безумовно, експериментальні дослідження в цьому напрямі будуть продовженні. Проте в даний час теорія прихованих параметрів, принаймні в її сучасній формі, не узгоджується з експериментальними даними.

Висновки. В праці запропоновано низку методичних пропозицій, котрі сприяють формуванню цілісної методики навчання квантової фізики в системі педагогічних ВНЗ, забезпечує збагачення змісту фізичної освіти та
приведенню його у відповідність до сучасного рівня розвитку науки, потреб практики, суспільних вимог до вчителя фізики.

В подальшому дослідженні доцільно продовжити в таких напрямах: дослідження теоретичних та методологічних проблем формування структури новітніх знань у підручниках фізики; розробки методики навчання фізики в педагогічних ВНЗ на основі фундаментальних узагальнюючих понять, теорій; дослідження психолого-педагогічних проблем і формування у студентів уявлень про новітні інформаційні технології навчання в умовах кредитно-модульної системи.

ЛІТЕРАТУРА

РЕЗЮМЕ

Н. И. Садовый, Е. М. Трифонова. Формирование современных подходов к изучению измерений физических величин в подготовке учителя физики.

В статье предложен ряд методических рекомендаций относительно усовершенствования содержания физического образования, в частности относительно изучения особенностей измерения физических характеристик микрообъектов в педагогических ВУЗах в условиях реформирования системы образования. Высокий научный уровень обучения физике в высшей школе предусматривает изучение студентами физической науки, в том числе и квантовой физики, на современном этапе ее развития.

Ключевые слова: измерение физических величин, квантовая физика, обучение студентов.

SUMMARY

M. Sadovoy, O. Trifonova. Forming of modern going is near study of measurings of physical sizes in preparation of teacher of physics.

In article the row of methodical advices is offered in relation to the improvement of maintenance of physical education, in particular in relation to the study of features of measuring of physical sizes of microobjects in pedagogical university in the conditions of reformation of educational industry. The high scientific level of studies of physics at higher school foresees the study of physical science students, in particular quantum physics, on the modern stage of its development.

Key words: measuring of physical sizes, quantum physics, studies of students.