Методичні аспекти вичення теми «Основна задача динаміки зв’язаних систем»
Вантажиться...
Дата
2019
Назва журналу
Номер ISSN
Назва тому
Видавець
Анотація
Стаття присвячена висвітленню методичних аспектів вивчення теми «Основна задача динаміки зв’язаних систем». На відміну від загального курсу «Механіка», при вивченні теоретичного курсу «Класична механіка» уже на початковому етапі − при формулюванні основної задачі механіки систем із в’язями − студенти стикаються з багатьма узагальненими і абстрактними поняттями, формування яких ставить перед викладачами безліч методичних проблем, які потрібно вирішити. Авторами статті узагальнено результати аналізу навчальних посібників та власного досвіду. На основі цього розглянуто один із можливих способів обґрунтування основної задачі механіки зв’язаних систем. Згідно з цим способом пропонується спочатку введення таких понять: механічні системи, механічні в'язі, класифікація в’язей, аксіома про звільнення від в'язей. Такий підхід дозволяє сформувати у студентів достатньо глибоке й стійке розуміння цих понять та суттєво полегшує формулювання основної задачі механіки невільної системи.
Introduction. While training physics and mathematics specialists, and physics teachers in particular, the main attention should be paid to the general principles, which in a compact form contain not only all known experimental and theoretical positions, but also allow to predict new discoveries. These principles include integral variational principles which were first formulated in mechanics. While training physics teachers, the above mentioned principles are studied in the first section of theoretical physics course – «Classical mechanics». Unlike the general course of «Mechanics», where students only deepen their school knowledge, while studying classical mechanics, at the initial stage in the process of formulating the main mechanics task of the related systems, they encounter many generalized and abstract concepts, which formation puts a lot of methodological problems upon the teachers that should be solved. The purpose of the article is to reveal methodical aspects of teaching «The main problem of dynamics of related systems» Methods. The following methods were used for research: systematic scientific and methodological analysis of textbooks and manuals, monographs, manuscripts, articles and materials of methodical conferences on the research problem; observation of the educational process; analysis of student learning results according to the research problem; synthesis, comparison and generalization of theoretical positions, discovered in the scientific and educational literature; generalization of own pedagogical experience and colleagues’ experience from other higher educational establishments. Results. One of the possible substantiation variants of the main mechanics task of relate systems is offered, which the authors use at the first lectures on classical mechanics. Conclusion. The considered method allows students to form sufficiently deep and stable understanding of the notion of relations and with the help of the relation notions and their reactions, allows us to formulate the main task of the mechanics of the non-free system. Further research will be aimed at highlighting the methodological aspects of teaching analytical mechanics at the pedagogical university.
Introduction. While training physics and mathematics specialists, and physics teachers in particular, the main attention should be paid to the general principles, which in a compact form contain not only all known experimental and theoretical positions, but also allow to predict new discoveries. These principles include integral variational principles which were first formulated in mechanics. While training physics teachers, the above mentioned principles are studied in the first section of theoretical physics course – «Classical mechanics». Unlike the general course of «Mechanics», where students only deepen their school knowledge, while studying classical mechanics, at the initial stage in the process of formulating the main mechanics task of the related systems, they encounter many generalized and abstract concepts, which formation puts a lot of methodological problems upon the teachers that should be solved. The purpose of the article is to reveal methodical aspects of teaching «The main problem of dynamics of related systems» Methods. The following methods were used for research: systematic scientific and methodological analysis of textbooks and manuals, monographs, manuscripts, articles and materials of methodical conferences on the research problem; observation of the educational process; analysis of student learning results according to the research problem; synthesis, comparison and generalization of theoretical positions, discovered in the scientific and educational literature; generalization of own pedagogical experience and colleagues’ experience from other higher educational establishments. Results. One of the possible substantiation variants of the main mechanics task of relate systems is offered, which the authors use at the first lectures on classical mechanics. Conclusion. The considered method allows students to form sufficiently deep and stable understanding of the notion of relations and with the help of the relation notions and their reactions, allows us to formulate the main task of the mechanics of the non-free system. Further research will be aimed at highlighting the methodological aspects of teaching analytical mechanics at the pedagogical university.
Опис
Ключові слова
вчителі фізики, класична механіка, в’язі, сили реакції, механічна система, future physics teachers, classical mechanics, relations, forces, reactions, mechanical system
Бібліографічний опис
Завражна, О. М. Методичні аспекти навчання теми «Основна задача динаміки зв’язаних систем» [Текст] / О. М. Завражна, І. О. Мороз // Вісник Глухівського національного педагогічного університету імені Олександра Довженка. Педагогічні науки : наукове видання : зб. наук. праць / Глухівський НПУ ім. О. Довженка ; [редкол.: О. І. Курок та ін.]. – Глухів : РВВ Глухівського НПУ ім. О. Довженка, 2019. – Вип. 40. – С. 132–140.